Integration of geometry and analysis for the study of liquid sloshing in railroad vehicle dynamics

Author(s):  
Huailong Shi ◽  
Liang Wang ◽  
Brynne Nicolsen ◽  
Ahmed A Shabana

A new continuum-based liquid sloshing approach that accounts for the effect of complex fluid and tank-car geometry on railroad vehicle dynamics is developed in this investigation. A unified geometry/analysis mesh is used from the outset to examine the effect of liquid sloshing on railroad vehicle dynamics during curve negotiation and during the application of electronically controlled pneumatic (ECP) brakes that produce braking forces uniformly and simultaneously across all cars. Using a non-modal approach, the geometry of the tank-car and fluid is accurately defined, a continuum-based fluid constitutive model is employed, and a fluid-tank contact algorithm is developed. The liquid sloshing model is integrated with a three-dimensional multibody system (MBS) railroad vehicle algorithm which accounts for the nonlinear wheel/rail contact. The three-dimensional wheel/rail contact force formulation used in this study accounts for the longitudinal, lateral, and spin creep forces that influence the vehicle stability. In order to examine the effect of the liquid sloshing on the railroad vehicle dynamics during curve negotiation, a general and precise definition of the outward inertia force is defined, and in order to correctly capture the fluid and tank-car geometry, the absolute nodal coordinate formulation (ANCF) is used. The balance speed and centrifugal effects in the case of tank-car partially filled with liquid are studied and compared with the equivalent rigid body model in curve negotiation and braking scenarios. In particular, the results obtained in the case of the ECP brake application of two freight car model are compared with the results obtained when using conventional braking. The traction analysis shows that liquid sloshing has a significant effect on the load distribution between the front and rear trucks. A larger coupler force develops when using conventional braking compared with ECP braking, and the liquid sloshing contributes to amplifying the coupler force in the ECP braking case compared to the equivalent rigid body model which does not capture the fluid nonlinear inertia effects. Furthermore, the results obtained in this study show that liquid sloshing can exacerbate the unbalance effects when the rail vehicle negotiates a curve at a velocity higher than the balance speed.

Author(s):  
Brynne Nicolsen ◽  
Huailong Shi ◽  
Liang Wang ◽  
Ahmed A. Shabana

Commonly-used sloshing models are either unable to capture changes in the continuous distribution of the fluid free surface, or are not suited for the integration with high fidelity computational multibody system (MBS) algorithms. The objective of this investigation is to address this deficiency by developing a new continuum-based liquid sloshing approach that accounts for the effect of complex fluid and tank geometry and can be systematically integrated with MBS algorithms in order to allow for studying complex motion scenarios. A unified geometry/analysis mesh is used from the outset to examine the effect of liquid sloshing on railroad and highway vehicle dynamics during various maneuvers including braking and curve negotiation [1,2]. Using a non-modal approach, the geometry of the tank and fluid is accurately defined, a continuum-based fluid constitutive model is developed, and a fluid-tank contact algorithm using the penalty approach is employed. In order to examine the effect of liquid sloshing on vehicle dynamics during curve negotiation, a general and precise definition of the outward inertia force is defined, which for flexible bodies does not take the simple form used in rigid body dynamics. During maneuvers, the liquid may experience large displacements and significant changes in shape that can be captured effectively using absolute nodal coordinate formulation (ANCF) finite elements. For rail systems, the liquid sloshing model is integrated with a three-dimensional MBS vehicle algorithm, in which the three-dimensional wheel/rail contact force formulation is used to account for the longitudinal, lateral, and spin creep forces that influence vehicle stability. The effects of fluid sloshing on vehicle dynamics in the case of a tank partially filled with liquid are studied and compared with the equivalent rigid body model in braking and curve negotiation. The results obtained in the study of the rail vehicle model show that liquid sloshing can exacerbate the unbalance effects when the rail vehicle negotiates a curve at a velocity higher than the balance speed, and can significantly increase coupler forces during braking. Analysis of the highway vehicle model shows that the liquid sloshing changes the contact forces between the tires and the ground — increasing the forces on certain wheels and decreasing the forces on other wheels — which in cases of extreme sloshing, can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.


2012 ◽  
Vol 224 ◽  
pp. 18-23
Author(s):  
Yun Jiao Zhang ◽  
Guo Wu Wei ◽  
Jian Sheng Dai

Pseudo-rigid-body model (PRBM) method, which simplifies the geometrical nonlinear analysis, has become an important tool for the analysis and synthesis of compliant mechanisms. In this paper, a simplified 2R PRBM with two rigid links and two torsion springs is proposed. The characteristic radius factor and stiffness coefficients are selected as the design variables; in order to be better to simulate the tip point and tip slope, a three-dimensional objective function is formulated to optimize the new pseudo-rigid-body model. It is revealed in this paper that the precision of the tip point simulation can be improved when the coefficient of the tip slope error in the objective function is reduced.


Author(s):  
Issa A. Ramirez ◽  
Craig P. Lusk

The kinematic equations for approximating the deflection of a three-dimensional cantilever beam were developed. The numerical equations were validated with a Finite Element Analysis program. With these equations, a pseudo-rigid-body model (PRBM) for an axisymmetric straight beam was developed. The axisymmetric PRBM consists of a spherical joint connecting two rigid links. The location of the deformed end of the beam is determined by two angles and the characteristic radius factor. The angle of the beam with respect to the vertical axis depends on the direction of the force with respect to the undeformed coordinate system. The Pearson’s correlation coefficient for the Finite Element Analysis model and the numerical integration is 0.952.


Author(s):  
Jairo Chimento ◽  
Craig Lusk ◽  
Ahmad Alqasimi

This paper presents the first three-dimensional pseudo-rigid body model (3-D PRBM) for straight cantilever beams with rectangular cross sections and spatial motion. Numerical integration of a system of differential equations yields approximate displacement and orientation of the beam’s neutral axis at the free-end, and curvatures of the neutral axis at the fixed-end. This data was used to develop the 3-D PRBM which consists of two torsional springs connecting two rigid links for a total of 2 degrees of freedom (DOF). The 3-D PRBM parameters that are comparable with existing 2-D model parameters are characteristic radius factor (means: γ = 0.8322), bending stiffness coefficient (means: KΘ = 2.5167) and parametric angle coefficient (means: cΘ = 1.2501). New parameters are introduced in the model in order to capture the spatial behavior of the deflected beam including two parametric angle coefficients (means: cΨ = 1.0714; cΦ = 1.0087).


2015 ◽  
Vol 25 (6) ◽  
pp. 574-580 ◽  
Author(s):  
Faustine Vallon ◽  
Amélie Reymond ◽  
Philipp Fürnstahl ◽  
Patrick O. Zingg ◽  
Atul F. Kamath ◽  
...  

Author(s):  
Enhui Zhang ◽  
Wenyan Zhu ◽  
Lihe Wang

Oil liquid sloshing is a common phenomenon in automobile fuel tank under variable working conditions. Installing baffles in automobile fuel tank is the most effective way to suppress adverse influence caused by oil liquid sloshing. Different types of three-dimensional finite element models filling oil liquid are created, meshed, and simulated. The reliability of simulation results is verified by test. The concept of time–area value is proposed in this work. In order to explore the influence of different baffle factors on oil liquid sloshing, six factors are studied. Six kinds of influencing factors are height, structure, shape, spacing, number, and placement of baffles. The sloshing pressure and time–area value are the core parameters for evaluating the influence degree. Some results could be obtained by comparing the parameters of oil liquid sloshing under the same condition. High baffles and baffles with small spacing have obvious attenuation influence on the pressure of oil liquid sloshing. Low baffles, double baffles, parallel baffles, and the combined action of inertia force and gravity are more beneficial to the reduction of time–area value. Time–area value is the largest and the smallest in fuel tank with intersection baffles and low baffles, respectively.


1998 ◽  
Vol 120 (3) ◽  
pp. 392-400 ◽  
Author(s):  
A. Saxena ◽  
S. N. Kramer

Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads. Because of this fact, traditional methods of deflection analysis do not apply. Since the nonlinearities introduced by these large deflections make the system comprising such members difficult to solve, parametric deflection approximations are deemed helpful in the analysis and synthesis of compliant mechanisms. This is accomplished by representing the compliant mechanism as a pseudo-rigid-body model. A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms. In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads. A numerical integration technique using quadrature formulae has been employed to solve the large deflection Bernoulli-Euler beam equation for the tip deflection. Implementation of this scheme is simpler than the elliptic integral formulation and provides very accurate results. An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Author(s):  
A. Saxena ◽  
Steven N. Kramer

Abstract Compliant members in flexible link mechanisms undergo large deflections when subjected to external loads for which, traditional methods of deflection analysis do not apply Nonlinearities introduced by these large deflections make the system comprising such members difficult to solve Parametric deflection approximations are then deemed helpful in the analysis and synthesis of compliant mechanisms This is accomplished by seeking the pseudo-rigid-body model representation of the compliant mechanism A wealth of analysis and synthesis techniques available for rigid-body mechanisms thus become amenable to the design of compliant mechanisms In this paper, a pseudo-rigid-body model is developed and solved for the tip deflection of flexible beams for combined end loads with positive end moments A numerical integration technique using quadrature formulae has been employed to solve the nonlinear Bernoulli-Euler beam equation for the tip deflection Implementation of this scheme is relatively simpler than the elliptic integral formulation and provides nearly accurate results Results of the numerical integration scheme are compared with the beam finite element analysis An example for the synthesis of a compliant mechanism using the proposed model is also presented.


Sign in / Sign up

Export Citation Format

Share Document