Volume 4A: Dynamics, Vibration, and Control
Latest Publications


TOTAL DOCUMENTS

71
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858370

Author(s):  
Ashkan Nejadpak ◽  
Cai Xia Yang

Unbalance is one of the most common mechanical faults in rotating machines. Different balancing methods to stabilize the unbalanced rotor are investigated in this paper. One approach of using solely the accelerometers data and intricate vibration theories is discussed. Although the method can eliminate the need of balancing equipment, and the amplitude and phase of the machine’s vibrations can be identified, it needs numerous measurements, and in some cases is impossible to be implemented. Therefore, a novel approach with reduced number of required measurements is proposed. Our method only requires two measurements, one from the original unbalanced condition, and the other from modified situation after adding an arbitrary trial mass to a marked location on the rotor. The rotating rotor is being video recorded during this process. The goal is to identify the position of the marked area whenever the amplitude of the sinusoidal vibration response reaches the maximum. To demonstrate the effectiveness of our method, an experiment is setup. Vibration of healthy and unbalanced flywheel attached on a three-phase induction motor is analyzed in both time and frequency domains. The rotation of the motor is video recorded under original unbalanced and modified situations. The correction mass and its adding location are calculated using proposed method. The vibration analysis of balancing result demonstrated that the system got dynamically balanced by adding right value and location of a mass. The method proposed and developed in this paper is more cost effective with the same accuracy as the other contested balancing techniques.


Author(s):  
Kyle Myers ◽  
Collier Fais ◽  
Matthew Zacharias ◽  
Muhammad Ali ◽  
Khairul Alam

The purpose of this experiment was to explore the operational behavior of hydrodynamic thrust bearings machined from various composite materials (PTFE-Filled Delrin Acetal Resin and MDS-Filled Nylon) and general Aluminum under a set of different axial loading conditions. Since thrust bearings allow mechanical components subjected to axial loads to rotate more freely, they must counter a great deal of friction which can cause bearing failure in order to maintain proper movement. In order to reduce friction and weight, this research posits that thrust bearings machined from composite materials of lower friction coefficients and densities to that of conventionally used materials such as aluminum may provide some advantages. This hypothesis was tested by machining three thrust bearings, all to the same geometric specifications (two composites and one Aluminum) and subjecting them to thrust loads of 25, 50, 75, and 100 pounds while rotating them at a constant rotational speed of 3050 RPM for 10 minutes at each load using a customized test rig. A thermocouple implanted into the bearings themselves recorded the operation temperatures at a sampling rate of 20 Hz. Based on the average temperatures recorded at the 100 pound axial/thrust load, the experiments suggest that the PTFE-Filled Delrin Acetal maintains the lowest average operating temperature of 29.5 °C, followed by the MDS-Filled Nylon at 41.6 °C and lastly the Aluminum at 54.4 °C — a trend that is observed at each axial load albeit less pronounced. These results suggest that composite materials such as PTFE-Filled Acetal and MDS-Filled Nylon to be used in lieu of conventional metals and operate at lower temperatures and lower friction.


Author(s):  
Renato Vidoni ◽  
Raimondo Gallo ◽  
Gianluca Ristorto ◽  
Giovanni Carabin ◽  
Fabrizio Mazzetto ◽  
...  

At today, available mechatronics technology allows exploiting smart and precise sensors as well as embedded and effective mechatronic systems for developing (semi-)autonomous robotic platforms able to both navigate in different outdoor environments and implementing Precision Farming techniques. In this work, the experimental outdoor assessment of the performance of a mobile robotic lab, the ByeLab — Bionic eYe Laboratory — is presented and discussed. The ByeLab, developed at the Faculty of Science and Technology of the Free University of Bolzano (I), has been conceived with the aim of creating a (semi-)autonomous robotic system able to sense and monitor the health status of orchards and vineyards. For assessing and measuring the shape and the volume of the canopy, LIDAR technology coupled with ad-hoc developed algorithms have been exploited. To validate the ByeLab different experimental tests have been carried out. In addition to the in-lab and structured environments experimental tests that allowed to tune the algorithms, in this work the assessment of its capabilities — in particular the sensoric system — has been made outdoor controlled environment tests.


Author(s):  
Mohammed Abdullah Maaz Siddiqui ◽  
Hong Zhou

Bistable mechanisms provide two stable positions. Input power is not needed to maintain any of the two stable positions. To switch from one stable position to another, input power is required. Bistable mechanisms have many applications including valves, closures, switches and various other devices. Unlike conventional rigid-body bistable mechanisms that rely on relative motions of kinematic joints, bistable compliant mechanisms take advantage of elastic deformations of flexible members to achieve two stable positions. There are two symmetric buckled shapes in a precompressed beam that has one fixed end and one pinned end. The two buckled shapes match the two stable equilibrium positions of bistable compliant mechanisms. The precompressed beam can be rotationally actuated at the pinned end to snap from one buckled shape to another. Synthesizing precompressed beams as bistable mechanisms is challenging because of buckling instability and integrated force and deflection characteristics. In this paper, the buckled shape is derived for a precompressed beam with fixed and pinned ends. The input torque at the pinned end is analyzed for a precompressed beam to snap between its two symmetric buckled shapes. Precompressed beams are synthesized as bistable compliant mechanisms through axial compression and beam thickness in this paper.


Author(s):  
Mohamed Gharib ◽  
Mansour Karkoub

Undesired vibrations in structures, buildings, and machines lead to reduction in the life of the system and greatly affects the safety of the occupying or operating personnel. In addition, economic and time losses could result from needed repairs or reconstruction. Many control techniques, active and passive, have been devised over the years to reduce/eliminate the vibrations in the aforementioned systems. Passive vibration control techniques are favorable over the active ones due to their simplicity, ease of implementation, cost, and power consumption. In dynamic structures, such as large buildings, passive control techniques are favored over their active counterparts. The most common types of passive control devices are tuned mass and impact dampers. The advocates of each of these devices boasts advantages of the others; however, there have been no systematic studies to compare and quantify the effectiveness of each of these types of devices as well as their suitability for specific applications. In this paper, a comparative study between the tuned mass dampers and impact dampers is conducted. A one-story structure is used to show the effectiveness of each of these devices in absorbing the vibrations of the structure. The coupled systems are modeled and simulated under free vibrations. The time responses are acquired using the same geometric parameters, excitation, and initial conditions. The comparisons are based on the settling time and amplitude decay rates of the primary system using each damper type. The numerical results show that both dampers can produce similar dampening effects if the parameters are optimized; however, correlating the dampers parameters is a challenging problem in the field of vibration and control.


Author(s):  
Yoshifumi Mori ◽  
Takashi Saito ◽  
Yu Mizobe

We focused on vibration characteristics of reciprocating compressors and constructed the mathematical model to calculate the natural frequencies and modes for crank angles and proposed a method to estimate the degree and the suspicious portion of failure by difference of temporal parameter values obtained using measuring data in operation and the mathematical model. In this paper, according to the proposed method, a case study is carried out using the field data, where the data were acquired before and after the failures occurred in the connecting parts of connecting rod, to prospect the difference between each parameter value for two operating states. Inspecting resonant characteristics each in the frequency response data relating to the natural frequencies for bending modes of the piston rod, we determined two resonant frequencies, which could correspond to the 1st and 2nd mode about bending of the piston rod. To equate the calculated each natural frequency from eigen value analysis based on the proposed model with each resonant frequency, we define the error function for the identified problem, namely optimum problem. In the identified results, it is found that some parameter values have much difference and the corresponding failure could occur around the connecting rod. We could show the possibility to detect both the change of the parameter values and the deterioration parts for two different kinds of the operating states by our proposed method.


Author(s):  
Adam Myszkowski ◽  
Tomasz Bartkowiak ◽  
Roman Staniek

In the paper, authors present a design of a novel input device, in which, thanks to two ergonomically placed wheels, the operator can control the multi-axis manipulator with a single hand. The application of rotating elements provides the following benefits: achieving unlimited angular displacement, controlling numerous number of axes thanks to the certain combination of wheels motions, assigning force and position amplification individually, what helps to obtain both high speed and precision. In order to generate feedback force in the joystick, dedicated MR brakes were designed and built. The proposed feedback approach is an example of admittance control [1]. The joystick was built and tested at the Institute of Mechanical Technology of Poznan University of Technology. In the article, a theoretical model of the brake was shown together with analysis and discussion of its parameters. Additionally, it was supplemented with the results of theoretical and simulative studies. The paper also contains the outcome of the initial study focused on the analysis of the functionality, ergonomics and possibility of two-, three- and four axis control. It showed that the control algorithms played an essential role in motion control. They allow a rapid change of the generated resistance force during the change of motion direction. The obtained results validated the assumed design of the joystick with rotary elements and applied MR brakes due to the possibility of precisely control the motion resistance.


Author(s):  
Kentaro Miyago ◽  
Kenyu Uehara ◽  
Takashi Saito

Recently, traffic accidents due to drowsy driving, operation mistake in the power plant by drowsiness and decrease arousal in employment during work have been attracted as problems. To avoid such an accident, arousal level could be quantitatively evaluated in real time. We suggested that the one of the parameters of Duffing oscillator parameters is related to the conventional arousal level using the EEG frequency component. However, in this examination, effects on the EEG from visual and active behavior were considered, but those from hearing also need to be investigated. In this paper, we performed the experiment in the musical environment using rock and classic music to investigate the model parameters for effect of the auditory stimulation, and acquired EEG data in Visual cortex and Frontal lobe. The acquired EEG data was used to identify the model parameters, which were identified solving the inverse problem by Least Square method. Results of investigating correlation between conventional arousal revel and model parameter shows a significant correlation in case of the auditory environmental situation. Moreover, Visual cortex is better than Frontal lobe as a measurement point in this evaluation method.


Author(s):  
Yanfei Zhang ◽  
Xiaohu Li ◽  
Jun Hong ◽  
Sun’an Wang ◽  
Baotong Li ◽  
...  

Variable preload technology is used to achieve appropriate preload applied on spindle bearing based on machining conditions. However, the bearing temperature rise will be directly affected by bearing preload as well as bearing rotation accuracy. So, the main objective of this paper is to propose a method to determine the rotation accuracy of the spindle affected by the thermal expensive due to heat generation under variable preloads. Five degrees of freedom (5-DOF) quasi-static model of angular contact ball bearing was established to investigate the internal load distribution of the contact areas between the race way and balls. Then local contact heat generation of the bearing is calculated based on hertz contact theory. Finally, an experimental platform equipped with hydraulic system is designed and fabricated, which is preloaded by a hydraulic chamber. Studies have shown that the rotation accuracy presents drastically with the spindle rotational speed. Moreover, the influence of the bearing preload has a secondary importance. Comparative analysis about the rotation accuracy between starting running state and stable running state after a few hours under the same preload has been investigated. Results show that the accuracy of rotation spindle present no obviously difference when the uneven thermal deformation of parts occurs in the spindle system.


Sign in / Sign up

Export Citation Format

Share Document