Fracture analysis of plastically graded material with thermo-mechanical J-integral

Author(s):  
Margi Gajjar ◽  
Himanshu Pathak

In this paper, the influence of plasticity graded property and thermal boundary conditions have been investigated on the fracture parameter, i.e. J-integral using the extended finite element method. A complete computational methodology has been presented to model elasto-plastic fracture problems with geometrical and material nonlinearities. For crack discontinuity modeling, a partition of unity enrichment concept was employed with additional mathematical functions like Heaviside and branch enrichment for crack discontinuity and stress field gradient, respectively. The modeling of the stress–strain relationship of the material is implemented using the Ramberg–Osgood material model and geometric nonlinearity is modeled using an updated Lagrangian approach. The isotropic hardening and von-Mises yield criteria are considered to check the plasticity condition. The elastic predictor–plastic corrector algorithm is employed to capture elasto-plastic stress in a cracked domain. The variation in plasticity properties for plastically graded material is modeled by exponential law. Furthermore, the nonlinear discrete equations are numerically solved using a Newton–Raphson iterative scheme. Various cracked problem geometries subjected to thermal (adiabatic and isothermal conditions) and thermo-mechanical loads are simulated for stress contours and J-integrals using the elasto-plastic fracture mechanics approach. A comparison of the results obtained using extended finite element method with literature and the finite element analysis (FEA) package shows the accuracy and effectiveness of the presented computational approach. A component-based problem, i.e. a Brazilian disc subjected to thermo-mechanical loading, has been solved to show the adaptability of this work.

2017 ◽  
Vol 20 (K3) ◽  
pp. 119-125
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Functionally graded material is of great importance in many engineering problems. Here the effect of multiple random inclusions in functionally graded material (FGM) is investigated in this paper. Since the geometry of entire model becomes complicated when many inclusions with different sizes appearing in the body, a methodology to model those inclusions without meshing the internal boundaries is proposed. The numerical method couples the level set method to the extended finite-element method (X-FEM). In the X-FEM, the finite-element approximation is enriched by additional functions through the notion of partition of unity. The level set method is used for representing the location of random inclusions. Numerical examples are presented to demonstrate the accuracy and potential of this technique. The obtained results are compared with available refered results and COMSOL, the finite element method software.


2017 ◽  
Vol 20 (K2) ◽  
pp. 141-147
Author(s):  
Bang Kim Tran ◽  
Huy The Tran ◽  
Tinh Quoc Bui ◽  
Thien Tich Truong

Analysis of mechanical behavior of a structure containing defects such as holes and inclusions is essential in many engineering applications. In many structures, the discontinuities may have a significant influence on the reduction of the structural stiffness. In this work, we consider the effect of multiple random holes and inclusions in functionally graded material (FGM) plate and apply the extended finite element method with enrichment functions to simulate the mechanical behavior of those discontinuous interfaces. The inclusions also have FGM properties. Numerical examples are considered and their obtained results are compared with the COMSOL, the finite element method software.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 2990
Author(s):  
Soufiane Montassir ◽  
Hassane Moustabchir ◽  
Ahmed Elkhalfi ◽  
Maria Luminita Scutaru ◽  
Sorin Vlase

In this study, a NURBS basis function-based extended iso-geometric analysis (X-IGA) has been implemented to simulate a two-dimensional crack in a pipe under uniform pressure using MATLAB code. Heaviside jump and asymptotic crack-tip enrichment functions are used to model the crack’s behaviour. The accuracy of this investigation was ensured with the stress intensity factors (SIFs) and the J-integral. The X-IGA—based SIFs of a 2-D pipe are compared using MATLAB code with the conventional finite element method available in ABAQUS FEA, and the extended finite element method is compared with a user-defined element. Therefore, the results demonstrate the possibility of using this technique as an alternative to other existing approaches to modeling cracked pipelines.


Author(s):  
Elena Benvenuti ◽  
Nicola Orlando

AbstractWe propose a formulation for tracking general crack paths in elastodamaging materials without mesh adaptivity and broadening of the damage band. The idea is to treat in a unified way both the damaging process and the development of displacement discontinuities by means of the regularized finite element method. With respect to previous authors’ contributions, a novel damage evolution law and an original crack tracking framework are proposed. We face the issue of mesh objectivity through several two-dimensional tests, obtaining smooth crack paths and reliable structural results.


Sign in / Sign up

Export Citation Format

Share Document