scholarly journals Novel approach for adaptive coefficient tuning for the simulation of evaporating high-speed sprays injected into a high-temperature and high-pressure environment

2019 ◽  
Vol 21 (7) ◽  
pp. 1162-1179 ◽  
Author(s):  
DM Nsikane ◽  
K Vogiatzaki ◽  
RE Morgan ◽  
M Heikal ◽  
K Mustafa ◽  
...  

Producing reliable in-cylinder simulations for quick-turnaround engine development for industrial purposes is a challenging task for modern computational fluid dynamics, mostly because of the tuning effort required for the sub-models used in the various frameworks (the Reynolds-averaged Navier–Stokes and large eddy simulation). Tuning is required because of the need for modern engines to operate under a wider range of conditions and fuels. In this article, we suggest a novel methodology based on automated simulation parameter optimisation that is capable of delivering a priori a coefficient matrix for each operating condition. This approach produces excellent results for multiple comparison metrics like liquid and vapour penetration lengths, radial and axial mass fraction and temperature distributions. In this article, we also show for the first time that input model coefficients can potentially be linked to ambient boundary conditions in a physically consistent manner. Changes in injection pressure, charge pressure and charge density are considered. This paves the way for the tabulation of the constants in order to eliminate lengthy tuning iterations between operating conditions and move towards adaptive simulations as the piston moves changing the in-cylinder conditions. An additional discussion is performed for the validity range of existent models given that in recent years there has been a shift towards more extreme thermodynamic conditions in the injection stage (reaching the limits of transcritical flows). Although in this work the framework was implemented in the Reynolds-averaged Navier–Stokes context because this is the tool of preference of digital engineering currently by automotive industries, the approach can be easily extended in large eddy simulation.

AIAA Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Tanner B. Nielsen ◽  
Jack R. Edwards ◽  
Harsha K. Chelliah ◽  
Damien Lieber ◽  
Clayton Geipel ◽  
...  

2019 ◽  
Vol 11 (12) ◽  
pp. 168781401989783
Author(s):  
Yun Ren ◽  
Zuchao Zhu ◽  
Denghao Wu ◽  
Xiaojun Li ◽  
Lanfang Jiang

The mechanism of flow separation in the impeller of a centrifugal pump with a low specific speed was explored by experimental, numerical, and theoretical methods. A novel delayed Reynolds-averaged Navier–Stokes/large eddy simulation hybrid algorithm combined with a rotation and curvature correction method was developed to calculate the inner flow field of the original pump for the large friction loss in the centrifugal impeller, high adverse pressure gradient, and large blade curvature. Boundary vorticity flux theory was introduced for internal flow diagnosis, and the relative velocity vector near the surface of the blade and the distribution of the dimensionless pressure coefficient was analyzed. The validity of the numerical method was verified, and the location of the backflow area and its flow features were determined. Finally, based on flow diagnosis, the geometric parameters influencing the flow state of the impeller were specifically adjusted to obtain a new design impeller. The results showed that the distribution of the boundary vorticity flux peak values, the skin friction streamline, and near-wall relative velocities improved significantly after the design change. In addition, the flow separation was delayed, the force applied on the blade was improved, the head under the part-load condition was improved, and the hydraulic efficiency was improved over the global flow ranges. It was demonstrated that the delayed Reynolds-averaged Navier–Stokes/large eddy simulation hybrid algorithm was capable to capture the separation flow in a centrifugal pump, and the boundary vorticity flux theory was suitable for the internal flow diagnosis of centrifugal pump.


Sign in / Sign up

Export Citation Format

Share Document