scholarly journals Canonical correlation analysis in high dimensions with structured regularization

2021 ◽  
pp. 1471082X2110410
Author(s):  
Elena Tuzhilina ◽  
Leonardo Tozzi ◽  
Trevor Hastie

Canonical correlation analysis (CCA) is a technique for measuring the association between two multivariate data matrices. A regularized modification of canonical correlation analysis (RCCA) which imposes an [Formula: see text] penalty on the CCA coefficients is widely used in applications with high-dimensional data. One limitation of such regularization is that it ignores any data structure, treating all the features equally, which can be ill-suited for some applications. In this article we introduce several approaches to regularizing CCA that take the underlying data structure into account. In particular, the proposed group regularized canonical correlation analysis (GRCCA) is useful when the variables are correlated in groups. We illustrate some computational strategies to avoid excessive computations with regularized CCA in high dimensions. We demonstrate the application of these methods in our motivating application from neuroscience, as well as in a small simulation example.

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 259
Author(s):  
Qilan Ran ◽  
Yedong Song ◽  
Wenli Du ◽  
Wei Du ◽  
Xin Peng

In order to reduce pollutants of the emission from diesel vehicles, complex after-treatment technologies have been proposed, which make the fault detection of diesel engines become increasingly difficult. Thus, this paper proposes a canonical correlation analysis detection method based on fault-relevant variables selected by an elitist genetic algorithm to realize high-dimensional data-driven faults detection of diesel engines. The method proposed establishes a fault detection model by the actual operation data to overcome the limitations of the traditional methods, merely based on benchmark. Moreover, the canonical correlation analysis is used to extract the strong correlation between variables, which constructs the residual vector to realize the fault detection of the diesel engine air and after-treatment system. In particular, the elitist genetic algorithm is used to optimize the fault-relevant variables to reduce detection redundancy, eliminate additional noise interference, and improve the detection rate of the specific fault. The experiments are carried out by implementing the practical state data of a diesel engine, which show the feasibility and efficiency of the proposed approach.


2017 ◽  
Vol 5 (325) ◽  
Author(s):  
Mirosław Krzyśko ◽  
Łukasz Waszak

Canonical correlation methods for data representing functions or curves have received much attention in recent years. Such data, known in the literature as functional data (Ramsay and Silverman, 2005), has been the subject of much recent research interest. Examples of functional data can be found in several application domains, such as medicine, economics, meteorology and many others. Unfortunately, the multivariate data canonical correlation methods cannot be used directly for functional data, because of the problem of dimensionality and difficulty in taking into account the correlation and order of functional data. The problem of constructing canonical correlations and canonical variables for functional data was addressed by Leurgans et al. (1993), and further developments were made by Ramsay and Silverman (2005). In this paper we propose a new method of constructing canonical correlations and canonical variables for functional data.


NeuroImage ◽  
2020 ◽  
Vol 216 ◽  
pp. 116745 ◽  
Author(s):  
Hao-Ting Wang ◽  
Jonathan Smallwood ◽  
Janaina Mourao-Miranda ◽  
Cedric Huchuan Xia ◽  
Theodore D. Satterthwaite ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document