A new type connection with optimum stiffness configuration for very large floating platforms

Author(s):  
Ye Lu ◽  
Haicheng Zhang ◽  
Yuchao Chen ◽  
Qijia Shi ◽  
Ye Zhou

A novel connection for super-scale modularized floating platforms is put forward for the purposes of suppressing the oscillation of the platform. The platform consists of multiple blocks where semi-submergible modules are flexibly connected with upper decks by elastic cushions. For the connection between adjacent blocks, neighboring decks are linked by rigid hinges and neighboring floating modules are connected by flexible linkages. Based on the linear wave theory and rigid-module-flexible-connection (RMFC) model, the governing equation of motions for the modularized floating platform is derived by using a network modeling method. In numerical case studies, a five-block platform is investigated. Taking combined responses of the platform and the connector loads as an objective function, the stiffness configuration of the connection and the elastic cushion is optimally determined by using a genetic algorithm. At last, the short-term extreme responses of the floating platform with the optimum setting of the stiffness configuration of the connection are analyzed.

1998 ◽  
Vol 65 (1) ◽  
pp. 141-149
Author(s):  
J. F. Hall

This paper develops a theory for geometrically nonlinear waves in strings and presents analytical solutions for a traveling kink, generation of a geometric wave with its accompanying P wave, reflection of a kink at a fixed support and at a smooth sliding support, and interaction of a P wave and a kink. Conditions that must be satisfied for linear wave theory to hold are derived. The nonlinear theory is demonstrated by extending an historically important solution of the barrage balloon problem that was obtained during World War II.


Author(s):  
Hans Bihs ◽  
Muk Chen Ong

Two-dimensional (2D) numerical simulations are performed to investigate the flows past partially-submerged circular cylinders in free surface waves. The 2D simulations are carried out by solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the k-ω turbulence model. The level set method is employed to model the free-surface waves. Validation studies of a numerical wave tank have been performed by comparing the numerical results with the analytical results obtained from the linear-wave theory. Wave forces on the partially-submerged cylinders have been calculated numerically and compared with the published theoretical and experimental data under regular-wave conditions. The free-surface elevations around the cylinders have been investigated and discussed.


1982 ◽  
Vol 1 (18) ◽  
pp. 108
Author(s):  
Bernard LeMehaute ◽  
James Walker ◽  
John Headland ◽  
John Wang

A method of calculating nonlinear wave induced forces and moments on piles of variable diameter is presented. The method is based on the Morrison equation and the linear wave theory with correction parameters to account for convective inertial effects in the wave field. These corrections are based on the stream function wave theory by Dean (1974). The method permits one to take into account the added wave force due to marine growth in the intertidal zone or due to a protective jacket, and can also be used to calculate forces on braces and an array of piles.


Sign in / Sign up

Export Citation Format

Share Document