scholarly journals Dosimetric Comparison of Helical Tomotherapy, Volumetric-Modulated Arc Therapy, and Intensity-Modulated Proton Therapy for Angiosarcoma of the Scalp

2021 ◽  
Vol 20 ◽  
pp. 153303382098586
Author(s):  
Tomoki Mizuno ◽  
Natsuo Tomita ◽  
Taiki Takaoka ◽  
Masashi Tomida ◽  
Hiroshi Fukuma ◽  
...  

Objective: We compared radiotherapy plans among helical tomotherapy (HT), volumetric-modulated arc therapy (VMAT), and intensity-modulated proton therapy (IMPT) for angiosarcoma of the scalp (AS). Methods: We conducted a planning study for 19 patients with AS. The clinical target volume (CTV) 1 and CTV2 were defined as the gross tumor volume with a specific margin and total scalp, respectively. For HT and VMAT, the planning target volume (PTV) 1 and PTV2 were defined as CTV1 and CTV2 with 0.5-cm margins, respectively. For IMPT, robust optimization was used instead of a CTV-PTV margin (i.e. CTV robust). The targets of the HT and VMAT plans were the PTV, whereas the IMPT plans targeted the CTV robust. In total, 70 Gy and 56 Gy were prescribed as the D95% (i.e. dose to 95% volume) of PTV1 (or CTV1 robust) and PTV2 (or CTV2 robust), respectively, using the simultaneous integrated boost (SIB) technique. Other constraint goals were also defined for the target and organs at risk (OAR). Results: All dose constraint parameters for the target and OAR met the goals within the acceptable ranges for the 3 techniques. The coverage of the targets replaced by D95% and D98% were almost equivalent among the 3 techniques. The homogeneity index of PTV1 or CTV1 robust was equivalent among the 3 techniques, whereas that of PTV2 or CTV2 robust was significantly higher in the IMPT plans than in the other plans. IMPT reduced the Dmean of the brain and hippocampus by 49% to 95%, and the Dmax of the spinal cord, brainstem, and optic pathway by 70% to 92% compared with the other techniques. Conclusion: The 3 techniques with SIB methods provided sufficient coverage and satisfactory homogeneity for the targets, but IMPT achieved the best OAR sparing.

2021 ◽  
Vol 20 ◽  
pp. 153303382110439
Author(s):  
Dandan Wang ◽  
Xingmin Ma ◽  
Lu Fu ◽  
Jiabing Gu ◽  
Tong Bai ◽  
...  

Objective: To investigate the features of helical tomotherapy and co-planar dual Arcs volumetric-modulated arc therapy during prophylactic cranial irradiation associated with bilateral hippocampal tissue sparing. Materials and methods: Helical tomotherapy and co-planar dual arcs volumetric-modulated arc therapy treatment plans were generated with a dose of 30 Gy/10 fractions in 16 patients treated with prophylactic cranial irradiation. The dose to the bilateral hippocampal tissues, organs at risk, and planning target volume were determined when the average dose of bilateral hippocampal tissues was reduced by approximately 4 Gy as an observation point. Changes in dosimetry when sparing the bilateral hippocampal tissues were determined for both modalities. Results: When bilateral hippocampal tissues were restricted to 8 Gy, D40%mean-bilateral hippocampal tissues = 7.64 ± 0.41 Gy in helical tomotherapy, while D40%mean-bilateral hippocampal tissues = 10.96 ± 0.38 Gy in co-planar dual arcs volumetric-modulated arc therapy volumetric-modulated arc therapy. Helical tomotherapy was associated with significantly lower doses to organs at risk, including Dmean-bilateral hippocampal tissues ( P = .03), D98%-bilateral hippocampal tissues ( P = .01), D2%-bilateral hippocampal tissues ( P = .01), Dmean-inner ear ( P = .02), Dmean-parotid glands ( P = .02), Dmax-lens ( P = .02), and Dmax-brainstem ( P = .02), but not Dmax-optic nerves ( P = .87). Helical tomotherapy provided better target coverage, with lower average D2%-PTV ( P = .02), higher average D98%-PTV ( P = .02), and better conformal index (0.87 vs 0.84, P = .02) and homogeneity index (0.15 vs 0.21, P = .05). With smaller bilateral hippocampal tissues doses, the planning target volume dose changed across 3 dosimetry regions for both modalities; the plateau region (>20.0 Gy for helical tomotherapy versus >16.0 Gy for co-planar dual arcs volumetric-modulated arc therapy), gradient region (20.0-12.0 Gy vs 16.0-11.0 Gy), and falling region (<12.0 Gy vs <11.0 Gy). The average delivery duration of helical tomotherapy was almost 7.7 times longer than that of co-planar dual arcs volumetric-modulated arc therapy. Conclusions: Helical tomotherapy was better at sparing the bilateral hippocampal tissues and organs at risk and had better target coverage but a significantly longer treatment duration than co-planar dual arcs volumetric-modulated arc therapy. Further dose decreases in the bilateral hippocampal tissues would yield worse target dose coverage.


2020 ◽  
Vol 19 ◽  
pp. 153303382098041
Author(s):  
Luca Cozzi ◽  
Tiziana Comito ◽  
Mauro Loi ◽  
Antonella Fogliata ◽  
Ciro Franzese ◽  
...  

Purpose: To investigate the role of intensity-modulated proton therapy (IMPT) for hepatocellular carcinoma (HCC) patients to be treated with stereotactic body radiation therapy (SBRT) in a risk-adapted dose prescription regimen. Methods: A cohort of 30 patients was retrospectively selected as “at-risk” of dose de-escalation due to the proximity of the target volumes to dose-limiting healthy structures. IMPT plans were compared to volumetric modulated arc therapy (VMAT) RapidArc (RA) plans. The maximum dose prescription foreseen was 75 Gy in 3 fractions. The dosimetric analysis was performed on several quantitative metrics on the target volumes and organs at risk to identify the relative improvement of IMPT over VMAT and to determine if IMPT could mitigate the need of dose reduction and quantify the consequent potential patient accrual rate for protons. Results: IMPT and VMAT plans resulted in equivalent target dose distributions: both could ensure the required coverage for CTV and PTV. Systematic and significant improvements were observed with IMPT for all organs at risk and metrics. An average gain of 9.0 ± 11.6, 8.5 ± 7.7, 5.9 ± 7.1, 4.2 ± 6.4, 8.9 ± 7.1, 6.7 ± 7.5 Gy was found in the near-to-maximum doses for the ribs, chest wall, heart, duodenum, stomach and bowel bag respectively. Twenty patients violated one or more binding constraints with RA, while only 2 with IMPT. For all these patients, some dose de-intensification would have been required to respect the constraints. For photons, the maximum allowed dose ranged from 15.0 to 20.63 Gy per fraction while for the 2 proton cases it would have been 18.75 or 20.63 Gy. Conclusion: The results of this in-silico planning study suggests that IMPT might result in advantages compared to photon-based VMAT for HCC patients to be treated with ablative SBRT. In particular, the dosimetric characteristics of protons may avoid the need for dose de-escalation in a risk-adapted prescription regimen for those patients with lesions located in proximity of dose-limiting healthy structures. Depending on the selection thresholds, the number of patients eligible for treatment at the full dose can be significantly increased with protons.


Sign in / Sign up

Export Citation Format

Share Document