scholarly journals Backward Protective Stepping During Dual-Task Scenarios in People With Parkinson’s Disease: A Pilot Study

2020 ◽  
Vol 34 (8) ◽  
pp. 702-710
Author(s):  
Daniel S. Peterson ◽  
Jordan S. Barajas ◽  
Linda Denney ◽  
Shyamal H. Mehta

Introduction. Reactive movements in response to a loss of balance are altered in people with Parkinson’s disease (PD) and are critical for fall prevention. Further, falls are more common while attention is divided. Although divided attention has been shown to impact postural responses in healthy older adults, the impact of dividing attention on reactive balance, and the natural prioritization across postural and cognitive tasks in people with PD is largely unknown. Objectives. To characterize (1) the impact of a secondary cognitive task on reactive postural control and (2) the prioritization across stepping and cognitive tasks in people with PD. Methods. Sixteen people with PD and 14 age-matched controls underwent step-inducing, support-surface perturbations from stance, with and without an auditory Stroop secondary cognitive task. Cognitive, neuromuscular, and protective stepping performance were calculated for single and dual task scenarios. Results. In PD and control participants, cognitive reaction times ( P = .001) and muscle onset latency ( P = .007), but not protective step outcomes ( P > .12 for all) were worse during dual tasking compared with single-task scenarios. Both PD and control groups prioritized the protective stepping task over the cognitive task. Overall, people with PD exhibited worse first-step margin of stability (a measure of protective step performance) than controls ( P = .044). Conclusion. This study provides preliminary evidence that people with PD, like age-matched controls, exhibit cognitive and neuromuscular, but not protective step, dual-task interference. The lack of dual-task interference on step performance indicates a postural prioritization for PD and healthy older adults during dual-task protective stepping.

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
J. D. Holmes ◽  
M. E. Jenkins ◽  
A. M. Johnson ◽  
S. G. Adams ◽  
S. J. Spaulding

Although dual-task interference has previously been demonstrated to have a significant effect on postural control among individuals with Parkinson's disease, the impact of speech complexity on postural control has not been demonstrated using quantitative biomechanical measures. The postural stability of twelve participants with idiopathic Parkinson's disease and twelve healthy age-matched controls was evaluated under three conditions: (1) without a secondary task, (2) performing a rote repetition task and (3) generating a monologue. Results suggested a significant effect of cognitive load on biomechanical parameters of postural stability. Although both groups increased their postural excursion, individuals with Parkinson's disease demonstrated significantly reduced excursion as compared with that of healthy age-matched controls. This suggests that participants with Parkinson's disease may be overconstraining their postural adjustments in order to focus attention on the cognitive tasks without losing their balance. Ironically, this overconstraint may place the participant at greater risk for a fall.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Prudence Plummer-D'Amato ◽  
Briana Brancato ◽  
Mallory Dantowitz ◽  
Stephanie Birken ◽  
Christina Bonke ◽  
...  

Although gait-related dual-task interference in aging is well established, the effect of gait and cognitive task difficulty on dual-task interference is poorly understood. The purpose of this study was to examine the effect of gait and cognitive task difficulty on cognitive-motor interference in aging. Fifteen older adults (72.1 years, SD 5.2) and 20 young adults (21.7 years, SD 1.6) performed three walking tasks of varying difficulty (self-selected speed, fast speed, and fast speed with obstacle crossing) under single- and dual-task conditions. The cognitive tasks were the auditory Stroop task and the clock task. There was a significant Group×Gait Task×Cognitive Task interaction for the dual-task effect on gait speed. After adjusting for education, there were no significant effects of gait or cognitive task difficulty on the dual-task effects on cognitive task performance. The results of this study provide evidence that gait task difficulty influences dual-task effects on gait speed, especially in older adults. Moreover, the effects of gait task difficulty on dual-task interference appear to be influenced by the difficulty of the cognitive task. Education is an important factor influencing cognitive-motor interference effects on cognition, but not gait.


2021 ◽  
pp. 136099
Author(s):  
Hossein Bagheri ◽  
Roya Khanmohammadi ◽  
Gholamreza Olyaei ◽  
Saeed Talebian ◽  
Mohammad Reza Hadian ◽  
...  

2019 ◽  
Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
mohammad Asghari Jafarabadi

Abstract Background: The aim of this study was to evaluate the effects of cognitive and physical loads on dynamic and static balance of older adults under single, dual and multi-task conditions. Methods: The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1kg, 2kg and 3kg in each hand) loads on dynamic and static balance of 42 older adults (21 males and 21 females), aged ≥ 60 years were studied. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results: The TUG speed of female participants was generally slower than that of male participants. Cognitive task influenced the participants’ dynamic balance during the dual-task conditions, while the static balance was not affected in this phase. The dynamic and static balance measures were more influenced when performing the multi-tasks than when doing the dual-tasks. The effects of various levels of physical demand on the dynamic balance varied greatly under dual- and multi-task conditions. Conclusions: The findings add to the understanding of the factors influencing the elderly balance and control under cognitive and physical functioning.


Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
Mohammad Asghari Jafarabadi

Objective The aim of this study is to examine the effects of cognitive and physical loads on dynamic and static balance performance of healthy older adults under single-, dual-, and multi-task conditions. Background Previous studies on postural control in older adults have generally used dual-task methodology, whereas less attention has been paid to multi-task performance, despite its importance in many daily and occupational activities. Method The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1, 2, and 3 kg in each hand) loads on dynamic and static balance performance of 42 older adults (21 males and 21 females) aged ≥60 years were examined. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results The TUG speed of female participants was generally slower than that of male participants. Age had no effect on balance performance measures. Under dual-task conditions, cognitive load decreased the dynamic balance performance, while the physical task levels had no effect. The dual-task conditions had no impact on the static balance performance. The effects of cognitive and physical loads on dynamic balance performance varied under dual- and multi-task conditions. Conclusion The findings highlight differences between dual- and multi-task protocols and add to the understanding of balance performance in older adults under cognitive and physical loads. Application The present study highlights differences between dual- and multi-task methodologies that need to be considered in future studies of balance and control in older adults.


2008 ◽  
Vol 20 (4) ◽  
pp. 349-354 ◽  
Author(s):  
Ka-Chun Siu ◽  
Vipul Lugade ◽  
Li-Shan Chou ◽  
Paul van Donkelaar ◽  
Marjorie H. Woollacott

US Neurology ◽  
2009 ◽  
Vol 05 (01) ◽  
pp. 30 ◽  
Author(s):  
Tao Wu ◽  
Mark Hallett ◽  
◽  

Performing two tasks simultaneously (dual task performance) is a frequent activity in human life. Patients with Parkinson’s disease (PD) commonly have more difficulty in performing dual tasks than healthy people. To date, research on the mechanisms of dual task interference in PD remains sparse. A recent study by Wu and Hallett in 2008 investigated the central neural correlates of dual task interference in PD, and demonstrated that dual task interference in PD is due to multiple reasons. First, the limitation of capacity of attentional resources is exceeded; second, PD patients perform tasks less automatically compared with normal subjects; and third, the central executive may be defective. However, our knowledge of this phenomenon is still far from complete and needs further investigation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Maayan Agmon ◽  
Einat Kodesh ◽  
Rachel Kizony

Background. The ability to safely conduct different types of walking concurrently with a cognitive task (i.e., dual task) is crucial for daily life. The contribution of different walking types to dual-task performance has not yet been determined, nor is there agreement on the strategies that older adults use to divide their attention between two tasks (task prioritization).Objectives. To compare the effect of walking in three different directions (forward, backward, and sideways) on dual-task performance and to explore the strategies of older adults to allocate their attention in response to different motor task demands.Design. A cross-sectional study.Subjects. Thirty-two (22 female) community-dwelling older adults (aged72.7±5.7years).Methods. Subjects randomly conducted single and dual task: walking to three directions separately, cognitive tasks separately, and combination of the two.Results. Walking forward was the least demanding task, during single (FW < BW, SW) (P<.001) and dual tasks (FW < BW < SW) (P<.001). The calculation of DTC revealed the same pattern (P<.001). DTC of the cognitive tasks was not significantly different among the three walking types.Conclusions. The decline mainly in the motor performance during dual task indicates that participants prioritized the cognitive task. These findings challenge the “posture first” paradigm for task prioritization.


Sign in / Sign up

Export Citation Format

Share Document