scholarly journals A comparative analysis of resource allocation schemes for real-time services in high-performance computing systems

2020 ◽  
Vol 16 (8) ◽  
pp. 155014772093275 ◽  
Author(s):  
Muhammad Shuaib Qureshi ◽  
Muhammad Bilal Qureshi ◽  
Muhammad Fayaz ◽  
Wali Khan Mashwani ◽  
Samir Brahim Belhaouari ◽  
...  

An efficient resource allocation scheme plays a vital role in scheduling applications on high-performance computing resources in order to achieve desired level of service. The major part of the existing literature on resource allocation is covered by the real-time services having timing constraints as primary parameter. Resource allocation schemes for the real-time services have been designed with various architectures (static, dynamic, centralized, or distributed) and quality of service criteria (cost efficiency, completion time minimization, energy efficiency, and memory optimization). In this analysis, numerous resource allocation schemes for real-time services in various high-performance computing (distributed and non-distributed) domains have been studied and compared on the basis of common parameters such as application type, operational environment, optimization goal, architecture, system size, resource type, optimality, simulation tool, comparison technique, and input data. The basic aim of this study is to provide a consolidated platform to the researchers working on scheduling and allocating high-performance computing resources to the real-time services. This work comprehensively discusses, integrates, analysis, and categorizes all resource allocation schemes for real-time services into five high-performance computing classes: grid, cloud, edge, fog, and multicore computing systems. The workflow representations of the studied schemes help the readers in understanding basic working and architectures of these mechanisms in order to investigate further research gaps.

2021 ◽  
Author(s):  
Alicia Ruvinsky ◽  
Timothy Garton ◽  
Daniel Chausse ◽  
Rajeev Agrawal ◽  
Harland Yu ◽  
...  

Managing the ever-growing volume and velocity of data across the battlefield is a critical problem for warfighters. Solving this problem will require a fundamental change in how battlefield analyses are performed. A new approach to making decisions on the battlefield will eliminate data transport delays by moving the analytical capabilities closer to data sources. Decision cycles depend on the speed at which data can be captured and converted to actionable information for decision making. Real-time situational awareness is achieved by locating computational assets at the tactical edge. Accelerating the tactical decision process leverages capabilities in three technology areas: (1) High-Performance Computing (HPC), (2) Machine Learning (ML), and (3) Internet of Things (IoT). Exploiting these areas can reduce network traffic and shorten the time required to transform data into actionable information. Faster decision cycles may revolutionize battlefield operations. Presented is an overview of an artificial intelligence (AI) system design for near-real-time analytics in a tactical operational environment executing on co-located, mobile HPC hardware. The report contains the following sections, (1) an introduction describing motivation, background, and state of technology, (2) descriptions of tactical decision process leveraging HPC problem definition and use case, and (3) HPC tactical data analytics framework design enabling data to decisions.


Sign in / Sign up

Export Citation Format

Share Document