scholarly journals Three-dimensional numerical study on flow dynamics characteristics in supercritical water fluidized bed with consideration of real particle size distribution by computational particle fluid dynamics method

2018 ◽  
Vol 10 (6) ◽  
pp. 168781401877987 ◽  
Author(s):  
Zhenqun Wu ◽  
Hui Jin ◽  
Guobiao Ou ◽  
Liejin Guo ◽  
Changqing Cao

Supercritical water fluidized bed is a promising reactor which can realize the efficient and clean gasification of coal to produce hydrogen. As the high pressure and temperature inside supercritical water fluidized bed, the study of the detail flow behaviors needs the help of numerical method. Considering the limitation of the two-fluid method and discrete element method, the computational particle fluid dynamics method was applied to this work. When particle size distribution was taken into consideration, the simulated results showed that the transformation from fixed bed regime to fluidized bed regime is a gradual process. With the increase in superficial fluid velocity, particles in small diameter migrate to the top of the bed and there exits layering phenomenon in the bed. Besides, though the particles are categorized as Geldart B group, the minimum fluidization velocity is not equal to the minimum bubbling fluidization velocity and there is a complicated bed expansion process after incipient fluidization. The bed expansion process is also influenced by the particle size distribution.

Author(s):  
Chaojie Li ◽  
Weiwen Wang ◽  
Xiuling Guo ◽  
Jihai Duan

AbstractFluidization characteristics of wide-size-distribution particles in the gas-solid fluidized bed reactor are investigated by applying experiment and computational fluid dynamics (CFD) methods. In this study, three types of narrow-cut particles and two sets of wide-size-distribution particles are used. A model considering particle size distribution is developed in the Eulerian frame, and good agreement between numerical results and experimental data is observed. The particle size distribution has an important effect on the average bed voidage. The axial particle diameter profiles along bed height have a “S” type feature. Minimum fluidization velocity is determined from the standard deviation of pressure fluctuations and bubble dynamics are analyzed based on power spectra. Results indicate that fine particle composition can reduce the minimum fluidization velocity of wide-size-distribution particle system and the bubble diameter in the fluidized bed.


Sign in / Sign up

Export Citation Format

Share Document