scholarly journals A condition-based maintenance model with past-dependent imperfect preventive repairs for continuously deteriorating systems

Author(s):  
Khac Tuan Huynh ◽  
Antoine Grall

Most condition-based imperfect maintenance models developed over the last few decades are memoryless in the sense that maintenance efficiency is completely [Formula: see text]-independent of previous interventions. However, many maintenance activities exhibit their past dependency in engineering practice, and this significant property should not be ignored in maintenance modeling. In this spirit, our aim is to develop a condition-based maintenance model for continuously deteriorating systems subject to a special kind of past-dependent imperfect repairs. Such a repair can put the system back to a deterioration level better than the one at just before the current repair, but worse than the one reached at the last repair. Besides, inspection and replacement are memoryless actions available for the system. They result in different effects on the system deterioration and incur different costs. To achieve high economic performances in the long term, these actions are coordinated into a control-limit deterioration-based maintenance policy. Its long-run maintenance cost rate is analytically evaluated using the semi-regenerative process theory. Numerous sensitivity studies to maintenance costs and to system characteristics give a thorough understanding about the policy behavior. Furthermore, comparisons with more classical policies justify the importance of incorporating the past dependency in maintenance modeling.

Author(s):  
Qingan Qiu ◽  
Baoliang Liu ◽  
Cong Lin ◽  
Jingjing Wang

This paper studies the availability and optimal maintenance policies for systems subject to competing failure modes under continuous and periodic inspections. The repair time distribution and maintenance cost are both dependent on the failure modes. We investigate the instantaneous availability and the steady state availability of the system maintained through several imperfect repairs before a replacement is allowed. Analytical expressions for system availability under continuous and periodic inspections are derived respectively. The availability models are then utilized to obtain the optimal inspection and imperfect maintenance policy that minimizes the average long-run cost rate. A numerical example for Remote Power Feeding System is presented to demonstrate the application of the developed approach.


2021 ◽  
Author(s):  
Xi Zhu ◽  
Liang Wen ◽  
Juan Li ◽  
Mingchang Song ◽  
Qiwei Hu

Abstract With the further development of service-oriented, performance-based contracting (PBC) has been widely adopted in industry and manufacturing. However, maintenance optimization problems under PBC have not received enough attention. To further extend the scope of PBC’s application in the field of maintenance optimization, we investigate the condition-based maintenance (CBM) optimization for gamma deteriorating systems under PBC. Considering the repairable single-component system subject to the gamma degradation process, this paper proposes a CBM optimization model to maximize the profit and improve system performance at a relatively low cost under PBC. In the proposed CBM model, the first inspection interval has been considered in order to reduce the inspection frequency and the cost rate. Then, a particle swarm algorithm (PSO) and related solution procedure are presented to solve the multiple decision variables in our proposed model. In the end, a numerical example is provided so as to demonstrate the superiority of the presented model. By comparing the proposed policy with the conventional ones, the superiority of our proposed policy is proved, which can bring more profits to providers and improve performance. Sensitivity analysis is conducted in order to research the effect of corrective maintenance cost and time required for corrective maintenance on optimization policy. A comparative study is given to illustrate the necessity of distinguishing the first inspection interval or not.


2018 ◽  
Vol 211 ◽  
pp. 03010
Author(s):  
S H Sarje

Excellence in maintenance is imperative in highly competitive market because it resulted into minimum maintenance cost, high equipment effectiveness, maximum reliability of the system, high quality of the products, low delivery time, high flexibility, safety etc. Any maintenance system such as Total Productive Maintenance (TPM) or Reliability Centered Maintenance (RCM) or Condition Based Maintenance (CBM) alone cannot achieve the excellence in maintenance but its integration may do. In this paper, an integration of TPM, RCM and CBM is proposed with a maintenance policy to take advantage of their respective strengths. A continuously monitored system subject to degradation due to the imperfect maintenance, where a hybrid hazard rate based on the concept of age reduction factor and hazard rate increase factor to predict the evolution of the system reliability in different maintenance cycles has been assumed.A quantitative decision making model for an integrated maintenance system is derived in order to assess the performance of the proposed maintenance policy. Numerical examples of calculation of optimal preventive maintenance age x and preventive maintenance number N* for the given cost ratio of corrective replacement and predictive preventive maintenance are given.


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Fesa Putra Kristianto ◽  
Bobby O.P. Soepangkat

PT X Tuban Plant has four plants (unit), namely Tuban I, Tuban II, Tuban III and Tuban IV. Each unit plant has three sub units, i.e., Crusher Operations Sub-Unit, Raw Mill, Kiln and Coal Mill (RKC) Sub-Unit and Finish Mill Sub-Unit. RKC 3 Sub-Unit in Tuban III has the highest number of equipment downtime and production loss. Therefore, it was necessary to optimize the time interval of preventive maintenance ( ) and total labor force as part of the company maintenance policy, would also fulfill the required reliability and availability of RKC 3 Sub-Unit. There were two steps in determining Tp optimum. The first step was to obtain the best distribution of the time between failures (TBF) and time to repair (TTR). The next step was to iterate the operating time (Ti) and Tp to determine the minimum preventive maintenance cost rate, reliability and maintainability.This iteration was applied to sub-units of RKC 3 that possesses a series system. Tp at the lowest rate of maintenance costs was the optimum Tp. The optimum Tp for RKC 3 Sub-Unit is 3743,28 hour. The preventive maintenance cost rate for optimum Tp is Rp33.100/hour and the reliability and availability of sub unit are 96,7% and 99,86% respectively.Keywords: reliability, availability, preventive maintenance cost rate, and preventive maintenance


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4346
Author(s):  
Kui Wang ◽  
Chao Deng ◽  
Lili Ding

This paper proposes a condition-based maintenance strategy for multi-component systems under degradation failures. The maintenance decision is based on the minimum long-run average cost rate (LACR) and the maximum residual useful lifetime (RUL), respectively. The aim of this paper is to determine the optimal monitoring interval and critical level for multi-component systems under different optimization objectives. A preventive maintenance (PM) is triggered when the degradation of component exceeds the corresponding critical level. Afterwards, the paper discusses the relationship between the critical level and the monitoring interval with regards to the LACR and RUL. Methods are also proposed to determine the optimal monitoring interval and the critical level under two decision models. Finally, the impact of maintenance decision variables on the LACR and RUL is discussed through a case study. A comparison with conventional maintenance policy shows an outstanding performance of the new model.


2013 ◽  
Vol 401-403 ◽  
pp. 2345-2348
Author(s):  
Hai Fei Diao ◽  
Jing Cai ◽  
Yu Fu ◽  
Hai Bin Lin ◽  
Xiang Zhang

With the development of Condition-Based Maintenance, there is an urgent need for failure dependence of redundant components in parallel system. In this paper, Markov maintenance cost decision analysis based on failure dependence of components was put forward, moreover, maintenance cost optimal model of parallel system with cost rate was established, meanwhile, the minimum cost rate as well as corresponding optimal detection interval was obtained. Finally, failure dependence and dependent failure rate to parallel system maintenance cost optimal model were studied and realized to prove this theory.


Sign in / Sign up

Export Citation Format

Share Document