Reliability modeling and maintenance optimization for the two-unit system with preset self-repairing mechanism

Author(s):  
Xian Zhao ◽  
Xinqian Huang ◽  
Jinglei Sun

In this article, the reliability model and the opportunistic maintenance optimization model are formulated for the preset self-repairing mechanism which is artificially designed and applied to many engineering systems. The preset self-repairing mechanism is first introduced into the reliability model, and a series system consisting of two units is built to describe the proposed model. One unit in the system is subject to external shocks and has the preset self-repairing mechanism, the other does not have the recovery mechanism and its lifetime distribution follows exponential distribution. For the system, the analytical expression of reliability is derived, and a maintenance optimization model taking the long-run average cost per unit time as objective function is established. The decision parameters of the maintenance policy are preventive and opportunistic degradation levels. Besides, a preventive maintenance policy is proposed for comparison with the opportunistic maintenance policy. Finally, the numerical examples are provided to obtain the optimal decision parameters and demonstrate the effectiveness of opportunistic maintenance policies.

Author(s):  
Qingan Qiu ◽  
Baoliang Liu ◽  
Cong Lin ◽  
Jingjing Wang

This paper studies the availability and optimal maintenance policies for systems subject to competing failure modes under continuous and periodic inspections. The repair time distribution and maintenance cost are both dependent on the failure modes. We investigate the instantaneous availability and the steady state availability of the system maintained through several imperfect repairs before a replacement is allowed. Analytical expressions for system availability under continuous and periodic inspections are derived respectively. The availability models are then utilized to obtain the optimal inspection and imperfect maintenance policy that minimizes the average long-run cost rate. A numerical example for Remote Power Feeding System is presented to demonstrate the application of the developed approach.


2020 ◽  
Vol 12 (21) ◽  
pp. 8833
Author(s):  
Wei Wang ◽  
Zhentian Sun ◽  
Zhiyuan Wang ◽  
Yue Liu ◽  
Jun Chen

In order to reduce the pressure on urban road traffic, multi-modal travel is gradually replacing single-modal travel. Park and ride (P + R) and kiss and ride (K + R) are effective methods to integrate car transportation and rail transit. However, there is often an imbalance between supply and demand in existing car occupant transfer facilities, which include both P + R and K + R facilities. Therefore, we aim to conduct a research on P + R and K + R facilities’ collaborative decision. It first classifies car occupant transfer facilities into types and levels and sets the service capacity of each category. On the premise of ensuring the occupancy of parking spaces, our model aims to maximize the intercepted vehicle mileage and transfer utility and establishes an optimal decision model for car occupant transfer facilities. The model collaboratively decides the facilities in terms of location selection, layout arrangement, and overflow demand conversion to balance the supply and demand. We choose Chengdu as an example, apply the multi-objective optimization model of car occupant transfer facilities, give improved schemes, and further explore the influence of the quantity of facilities on the optimization objectives. The results show that the scheme obtained by the proposed model is significantly better than the existing scheme.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Ruifeng Yang ◽  
Jianshe Kang ◽  
Zhenya Quan

Nuclear power plants are highly complex systems and the issues related to their safety are of primary importance. Probabilistic safety assessment is regarded as the most widespread methodology for studying the safety of nuclear power plants. As maintenance is one of the most important factors for affecting the reliability and safety, an enhanced preventive maintenance optimization model based on a three-stage failure process is proposed. Preventive maintenance is still a dominant maintenance policy due to its easy implementation. In order to correspond to the three-color scheme commonly used in practice, the lifetime of system before failure is divided into three stages, namely, normal, minor defective, and severe defective stages. When the minor defective stage is identified, two measures are considered for comparison: one is that halving the inspection interval only when the minor defective stage is identified at the first time; the other one is that if only identifying the minor defective stage, the subsequent inspection interval is halved. Maintenance is implemented immediately once the severe defective stage is identified. Minimizing the expected cost per unit time is our objective function to optimize the inspection interval. Finally, a numerical example is presented to illustrate the effectiveness of the proposed models.


Author(s):  
Jingyi Liu ◽  
Yugang Zhang ◽  
Bifeng Song

There are many industrial systems experiencing multiple dependent competing failure processes, in detail degradation failure (soft failure) and catastrophic failure (hard failure). Earlier research studied failure behaviors and system reliability during operational period, but did not consider the intermission period. Some industrial systems are not always operating continuously while with intermissions or rest period. The degradation and random shock processes are different between operating period and intermissions, which caused it more challenging and complicated to establish reliability model. In this article, a new reliability model for multiple dependent competing failure processes is developed with intermission considered. The system reliability can be analyzed based on the proposed model more practically. Besides, a preventive replacement maintenance policy is studied by minimizing the average long-run maintenance cost with intermission periods considered. Finally, the availability and general applicability of presented model are demonstrated by a case in different parameter settings.


Author(s):  
BRUNO CASTANIER ◽  
ANTOINE GRALL ◽  
CHRISTOPHE BÉRENGUER

We propose a hybrid maintenance policy which combines periodic (age-based or time-based) regulation-based inspections with aperiodic condition-based inspection/replacements for a stochastically and gradually deteriorating system. The stationary laws of the deterioration state of the maintained system are derived in order to evaluate the long-run average running cost on an infinite span generated by the proposed combined policy. A computable expression of the average cost is established using the regenerative or semi-regenerative properties of the stochastic process describing the maintained system state. The behavior of the proposed maintenance is illustrated through numerical experiments and it is shown that the cost incurred by the optimized combined policy is lower than the cost generated by the regulation-based maintenance alone.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xi Zhu ◽  
Fei Zhao ◽  
Juan Li ◽  
Yongsheng Bai ◽  
Qiwei Hu

As a new form of support contract, performance-based contracting has been extensively applied in both public and private sectors. However, maintenance policies under performance-based contracting have not gotten enough attention. In this paper, a preventive maintenance optimization model based on three-stage failure process for a single-component system is investigated with an objective of maximizing the profit and improving system performance at a lower cost under performance-based contracting. Different from conventional optimization models, the step revenue function is used to correlate profit with availability and cost. Then, a maintenance optimization model is proposed to maximize profit by optimizing the inspection interval. Moreover, the customers’ upper limit of funds is considered when we use the revenue function, which has rarely been considered in past studies. Finally, a case study on the cold water pumps along with comparison of linear and step revenue function and sensitivity analysis is provided to illustrate the applicability and effectiveness of our proposed approach.


Author(s):  
FANGFANG DING ◽  
ZHIGANG TIAN

Currently corrective maintenance and time-based preventive maintenance strategies are widely used in wind power industry. However, few methods are applied to optimize these strategies. This paper aims to develop opportunistic maintenance approaches for an entire wind farm rather than individual components that most of the existing studies deal with. Furthermore, we consider imperfect actions in the preventive maintenance tasks, which address the issue that preventive maintenance do not always return components to the as-good-as-new status in practice. In this paper we propose three opportunistic maintenance optimization models, where the preventive maintenance is considered as perfect, imperfect and two-level action, respectively. Simulation methods are developed to evaluate the costs of the proposed opportunistic maintenance policies. Numerical examples are provided to demonstrate the advantage of the proposed opportunistic maintenance methods in reducing the maintenance cost. The two-level action method demonstrates to be the most cost-effective in different cost situations, while the imperfect maintenance policy, which is a simpler method, is a close second. The developed methods are expected to bring immediate benefits to wind power industry.


2010 ◽  
Vol 34-35 ◽  
pp. 1211-1216
Author(s):  
Liang Pei Huang ◽  
Wen Hui Yue ◽  
Zheng Li Gong

The mechanical equipment faults result from parts failure in the period of service time, due to reassembly and maintenance, the reliability model for mechanical equipment is broken, so it is necessary to research and estimate the safety reliability of mechanical system. Based on the time-to-failure density function of parts, the mechanical system reliability model is constructed to track the change course of age structure of part population for the mechanical systems that are reassembled and maintained. By means of simulation of the system reliability model, concerned parameters with mechanical systems service life are defined, it is discussed how the time-to-failure density function have influence on the service life for mechanical systems undergoing reassembly and maintenance. It is significant to estimate reliability and failure rate of systems and to establish reasonable maintenance policies.


Author(s):  
Hasan Misaii ◽  
Firoozeh Haghighi ◽  
Mitra Fouladirad

In this paper, the maintenance optimization problem of multi-component system is considered. It is assumed that the exact cause of system failure might be masked. That is, the exact cause of failure is unknown, and we only know that it belongs to a set called mask set. Both opportunistic perfect preventive maintenance (OPPM) and perfect corrective maintenance are considered. Threshold of OPPM and inter-inspection interval are considered as decision parameters which are optimized using long-run cost rate criteria. The applicability of the proposed maintenance policy is investigated using an illustrative example.


Sign in / Sign up

Export Citation Format

Share Document