scholarly journals Correlation of arterial blood gas markers and lactate levels with outcomes in pediatric traumatic brain injury

2017 ◽  
Vol 26 (4) ◽  
pp. 246-252 ◽  
Author(s):  
Zhi Min Ng ◽  
Wei Jie Hong ◽  
Shu-Ling Chong ◽  
John C Allen ◽  
Lik Eng Loh ◽  
...  
2019 ◽  
Vol 131 (5) ◽  
pp. 1639-1647 ◽  
Author(s):  
Laura Dellazizzo ◽  
Simon-Pierre Demers ◽  
Emmanuel Charbonney ◽  
Virginie Williams ◽  
Karim Serri ◽  
...  

OBJECTIVEAvoiding decreases in brain tissue oxygenation (PbtO2) after traumatic brain injury (TBI) is important. How best to adjust PbtO2 remains unclear. The authors investigated the association between partial pressure of oxygen (PaO2) and PbtO2 to determine the minimal PaO2 required to maintain PbtO2 above the hypoxic threshold (> 20 mm Hg), accounting for other determinants of PbtO2 and repeated measurements in the same patient. They also explored the clinical utility of a novel concept, the brain oxygenation ratio (BOx ratio = PbtO2/PaO2) to detect overtreatment with the fraction of inspired oxygen (FiO2).METHODSA retrospective cohort study at an academic level 1 trauma center included 38 TBI patients who required the insertion of a monitor to measure PbtO2. Various determinants of PbtO2 were collected simultaneously whenever a routine arterial blood gas was drawn. A PbtO2/PaO2 ratio was calculated for each blood gas and plotted over time for each patient. All patients were managed according to a standardized clinical protocol. A mixed effects model was used to account for repeated measurements in the same patient.RESULTSA total of 1006 data points were collected. The lowest mean PaO2 observed to maintain PbtO2 above the ischemic threshold was 94 mm Hg. Only PaO2 and cerebral perfusion pressure were predictive of PbtO2 in multivariate analysis. The PbtO2/PaO2 ratio was below 0.15 in 41.7% of all measures and normal PbtO2 values present despite an abnormal ratio in 27.1% of measurements.CONCLUSIONSThe authors’ results suggest that the minimal PaO2 target to ensure adequate cerebral oxygenation during the first few days after TBI should be higher than that suggested in the Brain Trauma Foundation guidelines. The use of a PbtO2/PaO2 ratio (BOx ratio) may be clinically useful and identifies abnormal O2 delivery mechanisms (cerebral blood flow, diffusion, and cerebral metabolic rate of oxygen) despite normal PbtO2.


2020 ◽  
Vol 132 (6) ◽  
pp. 1952-1960 ◽  
Author(s):  
Seung-Bo Lee ◽  
Hakseung Kim ◽  
Young-Tak Kim ◽  
Frederick A. Zeiler ◽  
Peter Smielewski ◽  
...  

OBJECTIVEMonitoring intracranial and arterial blood pressure (ICP and ABP, respectively) provides crucial information regarding the neurological status of patients with traumatic brain injury (TBI). However, these signals are often heavily affected by artifacts, which may significantly reduce the reliability of the clinical determinations derived from the signals. The goal of this work was to eliminate signal artifacts from continuous ICP and ABP monitoring via deep learning techniques and to assess the changes in the prognostic capacities of clinical parameters after artifact elimination.METHODSThe first 24 hours of monitoring ICP and ABP in a total of 309 patients with TBI was retrospectively analyzed. An artifact elimination model for ICP and ABP was constructed via a stacked convolutional autoencoder (SCAE) and convolutional neural network (CNN) with 10-fold cross-validation tests. The prevalence and prognostic capacity of ICP- and ABP-related clinical events were compared before and after artifact elimination.RESULTSThe proposed SCAE-CNN model exhibited reliable accuracy in eliminating ABP and ICP artifacts (net prediction rates of 97% and 94%, respectively). The prevalence of ICP- and ABP-related clinical events (i.e., systemic hypotension, intracranial hypertension, cerebral hypoperfusion, and poor cerebrovascular reactivity) all decreased significantly after artifact removal.CONCLUSIONSThe SCAE-CNN model can be reliably used to eliminate artifacts, which significantly improves the reliability and efficacy of ICP- and ABP-derived clinical parameters for prognostic determinations after TBI.


Sign in / Sign up

Export Citation Format

Share Document