scholarly journals Image Content Enhancement Through Salient Regions Segmentation for People With Color Vision Deficiencies

i-Perception ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 204166951984107 ◽  
Author(s):  
Alessandro Bruno ◽  
Francesco Gugliuzza ◽  
Edoardo Ardizzone ◽  
Calogero Carlo Giunta ◽  
Roberto Pirrone

Color vision deficiencies affect visual perception of colors and, more generally, color images. Several sciences such as genetics, biology, medicine, and computer vision are involved in studying and analyzing vision deficiencies. As we know from visual saliency findings, human visual system tends to fix some specific points and regions of the image in the first seconds of observation summing up the most important and meaningful parts of the scene. In this article, we provide some studies about human visual system behavior differences between normal and color vision-deficient visual systems. We eye-tracked the human fixations in first 3 seconds of observation of color images to build real fixation point maps. One of our contributions is to detect the main differences between the aforementioned human visual systems related to color vision deficiencies by analyzing real fixation maps among people with and without color vision deficiencies. Another contribution is to provide a method to enhance color regions of the image by using a detailed color mapping of the segmented salient regions of the given image. The segmentation is performed by using the difference between the original input image and the corresponding color blind altered image. A second eye-tracking of color blind people with the images enhanced by using recoloring of segmented salient regions reveals that the real fixation points are then more coherent (up to 10%) with the normal visual system. The eye-tracking data collected during our experiments are in a publicly available dataset called Eye-Tracking of Color Vision Deficiencies.

Author(s):  
Oleg Sytnik ◽  
Vladimir Kartashov

The problems of highlighting the main informational aspects of images and creating their adequate models are discussed in the chapter. Vision systems can receive information about an object in different frequency ranges and in a form that is not accessible to the human visual system. Vision systems distort the information contained in the image. Therefore, to create effective image processing and transmission systems, it is necessary to formulate mathematical models of signals and interference. The chapter discusses the features of perception by the human visual system and the issues of harmonizing the technical characteristics of industrial systems for receiving and transmitting images. Methods and algorithms of pattern recognition are discussed. The problem of conjugation of the characteristics of the technical vision system with the consumer of information is considered.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2740
Author(s):  
George E. Tsekouras ◽  
Anastasios Rigos ◽  
Stamatis Chatzistamatis ◽  
John Tsimikas ◽  
Konstantinos Kotis ◽  
...  

In this paper, a novel method to modify color images for the protanopia and deuteranopia color vision deficiencies is proposed. The method admits certain criteria, such as preserving image naturalness and color contrast enhancement. Four modules are employed in the process. First, fuzzy clustering-based color segmentation extracts key colors (which are the cluster centers) of the input image. Second, the key colors are mapped onto the CIE 1931 chromaticity diagram. Then, using the concept of confusion line (i.e., loci of colors confused by the color-blind), a sophisticated mechanism translates (i.e., removes) key colors lying on the same confusion line to different confusion lines so that they can be discriminated by the color-blind. In the third module, the key colors are further adapted by optimizing a regularized objective function that combines the aforementioned criteria. Fourth, the recolored image is obtained by color transfer that involves the adapted key colors and the associated fuzzy clusters. Three related methods are compared with the proposed one, using two performance indices, and evaluated by several experiments over 195 natural images and six digitized art paintings. The main outcomes of the comparative analysis are as follows. (a) Quantitative evaluation based on nonparametric statistical analysis is conducted by comparing the proposed method to each one of the other three methods for protanopia and deuteranopia, and for each index. In most of the comparisons, the Bonferroni adjusted p-values are <0.015, favoring the superiority of the proposed method. (b) Qualitative evaluation verifies the aesthetic appearance of the recolored images. (c) Subjective evaluation supports the above results.


2001 ◽  
Vol 204 (14) ◽  
pp. 2391-2399 ◽  
Author(s):  
Adrian G. Dyer

SUMMARY Ocular filters in the eyes of many vertebrates, including humans, absorb wavelengths shorter than approximately 400nm. These filters prevent the β-band of a visual pigment from being exposed to ultraviolet radiation, essentially narrowing the spectral sensitivity of the different photoreceptor classes. A comparison of different hypothetical visual systems is used to show that von Kries colour constancy is improved by ocular filtration of ultraviolet radiation, whilst there is no reduction in colour discrimination. Furthermore, it is shown that the asymmetric spectral spacing of different photoreceptor classes present in the human visual system may benefit colour constancy. The results are interpreted in relation to predictions of von Kries colour constancy for a standard human observer.


2020 ◽  
pp. bmjmilitary-2020-001493
Author(s):  
Bonnie Noeleen Posselt ◽  
M Winterbottom

Visual standards for military aviators were historically set in the 1920s with requirements based on the visual systems of aircraft at the time, and these standards have changed very little despite significant advances in aircraft technology. Helmet-mounted displays (HMDs) today enable pilots to keep their head out of the cockpit while flying and can be monocular, biocular or binocular in design. With next generation binocular HMDs, flight data can be displayed in three-dimensional stereo to declutter information presented, improving search times and potentially improve overall performance further. However, these new visually demanding technologies place previously unconsidered stresses on the human visual system. As such, new medical vision standards may be required for military aircrew along with improved testing methods to accurately characterise stereo acuity.


2021 ◽  
Author(s):  
Kyle J. McCulloch ◽  
Aide Macias-Muñoz ◽  
Ali Mortazavi ◽  
Adriana D. Briscoe

AbstractColor vision modifications occur in animals via a process known as spectral tuning. In Heliconius butterflies, a genus-specific UVRh opsin duplication led to the evolution of UV color discrimination in Heliconius erato females, a rare trait among butterflies. In the H. melpomene and H. ismenius lineages, the UV2 receptor has been lost. Here we compare how loss of the UV2 photoreceptor has altered the visual system of these butterflies. We compare visual system evolution in three Heliconius butterfly species using a combination of intracellular recordings, ATAC-seq, and antibody staining. We identify several spectral tuning mechanisms including adaptive evolution of opsins, deployment of two types of filtering pigments, and co-expression of two distinct opsins in the same cell. Our data show that opsin gain and loss is driving rapid divergence in Heliconius visual systems via tuning of multiple spectral classes of photoreceptor in distinct lineages, potentially contributing to ongoing speciation in this genus.


Sign in / Sign up

Export Citation Format

Share Document