scholarly journals Outgrowing endothelial and smooth muscle cells for tissue engineering approaches

2017 ◽  
Vol 8 ◽  
pp. 204173141769885 ◽  
Author(s):  
Moritz Kolster ◽  
Mathias Wilhelmi ◽  
Claudia Schrimpf ◽  
Andres Hilfiker ◽  
Axel Haverich ◽  
...  

In recent years, circulating progenitors of endothelial cells and smooth muscle cells were identified in the peripheral blood. In our study, we evaluated the utilization of both cell types isolated and differentiated from peripheral porcine blood in terms for their use for tissue engineering purposes. By means of density gradient centrifugation, the monocyte fraction from porcine blood was separated, split, and cultivated with specific culture media with either endothelial cell growth medium-2 or smooth muscle cell growth medium-2 for the differentiation of endothelial cells or smooth muscle cells. Obtained cells were characterized at an early stage of cultivation before the first passage and a late stage (fourth passage) on the basis of the expression of the antigens CD31, CD34, CD45, nitric oxide synthase, and the contractile filaments smooth-muscle alpha-actin (sm-alpha-actin) and smoothelin. Functional characterization was done based on the secretion of nitric oxide, the formation of a coherent monolayer on polytetrafluoroethylene, and capillary sprouting. During cultivation in both endothelial cell growth medium-2 and smooth muscle cell growth medium-2, substantially two types of cells grew out: early outgrown CD45-positive cells, which disappeared during further cultivation, and in 85% (n = 17/20) of cultures cultivated with endothelial cell growth medium-2 colony-forming late outgrowth endothelial cells. During cultivation with smooth muscle cell growth medium-2 in 80% (n = 16/20) of isolations colony-forming late outgrowth smooth muscle cells entered the stage. Cultivation with either endothelial cell growth medium-2 or smooth muscle cell growth medium-2 had selective effect on the late outgrown cells to that effect that the number of CD31-positive cells increased from 34.8% ± 13% to 83.9% ± 8% in cultures cultivated with endothelial cell growth medium-2 and the number of sm-α-actin+ cells increased from 52.6% ± 18% to 88% ± 5% in cultures cultivated with smooth muscle cell growth medium-2, respectively. Functional analyses revealed significantly higher levels of nitric oxide secretion, endothelialization capacity, and capillary formation in not expanded cultures cultivated with endothelial cell growth medium-2 in comparison to later stages of cultivation and mature aortic cells. Blood seems to be a reliable and feasible source for the isolation of both endothelial and smooth muscle cells for application in tissue engineering approaches. Whereas, early co-cultures of early and late outgrowth cells provide functional advantages, the differentiation of cells can be directed selectively by the used culture medium for the expansion of highly proliferative late outgrowth endothelial cells and late outgrowth smooth muscle cells, respectively.

1981 ◽  
Vol 90 (2) ◽  
pp. 372-379 ◽  
Author(s):  
JJ Castellot ◽  
ML Addonizio ◽  
R Rosenberg ◽  
MJ Karnovsky

Using cultured cells from bovine and rat aortas, we have examined the possibility that endothelial cells might regulate the growth of vascular smooth muscle cells. Conditioned medium from confluent bovine aortic endothelial cells inhibited the proliferation of growth-arrested smooth muscle cells. Conditioned medium from exponential endothelial cells, and from exponential or confluent smooth muscle cells and fibroblasts, did not inhibit smooth muscle cell growth. Conditioned medium from confluent endothelial cells did not inhibit the growth of endothelial cells or fibroblasts. In addition to the apparent specificity of both the producer and target cell, the inhibitory activity was heat stable and not affected by proteases. It was sensitive flavobacterium heparinase but not to hyaluronidase or chondroitin sulfate ABC lyase. It thus appears to be a heparinlike substance. Two other lines of evidence support this conclusion. First, a crude isolate of glycosaminoglycans (TCA-soluble, ethanol-precipitable material) from endothelial cell-conditioned medium reconstituted in 20 percent serum inhibited smooth muscle cell growth; glycosaminoglycans isolated from unconditioned medium (i.e., 0.4 percent serum) had no effect on smooth muscle cell growth. No inhibition was seen if the glycosaminoglycan preparation was treated with heparinase. Second, exogenous heparin, heparin sulfate, chondroitin sulfate B (dermatan sulfate), chondroitin sulfate ABC, and hyaluronic acid were added to 20 percent serum and tested for their ability to inhibit smooth muscle cell growth. Heparin inhibited growth at concentrations as low as 10 ng/ml. Other glycosaminoglycans had no effect at doses up to 10 μg/ml. Anticoagulant and non- anticoagulant heparin were equally effective at inhibiting smooth muscle cell growth, as they were in vivo following endothelial injury (Clowes and Karnovsk. Nature (Lond.). 265:625-626, 1977; Guyton et al. Circ. Res. 46:625-634, 1980), and in vitro following exposure of smooth muscle cells to platelet extract (Hoover et al. Circ. Res. 47:578-583, 1980). We suggest that vascular endothelial cells may secrete a heparinlike substance in vivo which may regulate the growth of underlying smooth muscle cells.


2003 ◽  
Vol 94 (4) ◽  
pp. 1403-1409 ◽  
Author(s):  
A. Cogo ◽  
G. Napolitano ◽  
M. C. Michoud ◽  
D. Ramos Barbon ◽  
M. Ward ◽  
...  

Although it is well known that hypoxemia induces pulmonary vasoconstriction and vascular remodeling, due to the proliferation of both vascular smooth muscle cells and fibroblasts, the effects of hypoxemia on airway smooth muscle cells are not well characterized. The present study was designed to assess the in vitro effects of hypoxia (1 or 3% O2) on rat airway smooth muscle cell growth and response to mitogens (PDGF and 5-HT). Cell growth was assessed by cell counting and cell cycle analysis. Compared with normoxia (21% O2), there was a 42.2% increase in the rate of proliferation of cells exposed to 3% O2 (72 h, P = 0.006), as well as an enhanced response to PDGF (13.9% increase; P = 0.023) and to 5-HT (17.2% increase; P = 0.039). Exposure to 1% O2 (72 h) decreased cell proliferation by 21.0% ( P = 0.017) and reduced the increase in cell proliferation induced by PGDF and 5-HT by 16.2 and 15.7%, respectively ( P = 0.019 and P = 0.011). A significant inhibition in hypoxia-induced cell proliferation was observed after the administration of bisindolylmaleimide GF-109203X (a specific PKC inhibitor) or downregulation of PKC with PMA. Pretreatment with GF-109203X decreased proliferation by 21.5% ( P = 0.004) and PMA by 31.5% ( P = 0.005). These results show that hypoxia induces airway smooth muscle cell proliferation, which is at least partially dependent on PKC activation. They suggest that hypoxia could contribute to airway remodeling in patients suffering from chronic, severe respiratory diseases.


2012 ◽  
Vol 16 (9) ◽  
pp. 2117-2126 ◽  
Author(s):  
Claudia Tersteeg ◽  
Mark Roest ◽  
Elske M. Mak-Nienhuis ◽  
Erik Ligtenberg ◽  
Imo E. Hoefer ◽  
...  

2000 ◽  
Vol 191 (4) ◽  
pp. S3
Author(s):  
Peter R Nelson ◽  
Arthur J Kehas ◽  
Robert J Wagner ◽  
Richard R Proia ◽  
Jack L Cronenwett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document