endothelial cell growth
Recently Published Documents


TOTAL DOCUMENTS

686
(FIVE YEARS 15)

H-INDEX

83
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2563
Author(s):  
Abu ElGasim Ahmed Yagoub ◽  
Ghedeir Muslem Alshammari ◽  
Pandurangan Subash-Babu ◽  
Mohammed Awad alkareem Mohammed ◽  
Mohammed Abdo Yahya ◽  
...  

In this research, a simple, green approach was employed to synthesize silver nanoparticles with the aid of Ziziphus spina-christi (L.) methanol root extract, which can act as a reducing, capping agent to treat obesity and inflammation. Globally, Ziziphus spina-christi (Jujube) root is used in traditional therapy as a lipolysis promoter. GC-MS results confirmed the availability of kaempferol (flavonol), cannabinol and indole-3-carboxylic acid in Ziziphus spina-christi root methanol extract (ZSE). ZSE silver nanoparticles (ZS-Ag-NPs) were synthesized and their effect on mitochondrial fatty acid oxidation capacity and adipokine levels in maturing adipocytes were analyzed. Maturing adipocytes treated with 0.4 µg/dL of ZSE and ZS-Ag-NPs significantly reduced the lipid content in adipocytes by 64% and 82%, respectively. In addition, lipolysis-related genes such as LPL (1.9 fold), HSL (2.3 fold), PGC-1α (3 fold), UCP-1 (4.1 fold), PRDM16 (2 fold) and PPARα (2.7 fold) increased significantly in ZS-Ag-NPs treated maturing adipocytes. The ZS-Ag-NPs treatment significantly decreased insulin resistance and metabolic inflammation-related LTB4-R, TNF-α, IL-4 and STAT-6 mRNA levels. Mitochondrial thermogenesis stimulating capacity of ZS-Ag-NPs was further confirmed by the significantly enhanced CREB-1 and AMPK protein levels in adipocytes. Furthermore, ZS-Ag-NPs treated adipokines (condition media, CM) were treated with human umbilical vein endothelial cells (HUVECs) to determine cytotoxicity and pro-inflammatory stimulus capacity. We found that ZS-Ag-NPs treated adipocyte CM effectively increased mRNA expression levels of the vascular endothelial cell growth factor (VEGF), and down-regulated oxidative stress (LPO, eNOS, and HO) and vascular cell inflammation (ICAM, VCAM, TNF-α, IL-1β, and NF-κB). In conclusion, ZS-Ag-NPs displayed an action at the molecular level in mitochondrial fatty acid oxidation, decreased adipokine secretion in adipocytes, and enhanced vascular endothelial cell growth. This molecular mechanical action of ZS-Ag-NPs reduced effectively obesity progressions and metabolic inflammatory pathogenesis associated with aging.


2021 ◽  
pp. 039139882110431
Author(s):  
Andreas Groger ◽  
Ioannis-Fivos Megas ◽  
Ernst Magnus Noah ◽  
Norbert Pallua ◽  
Gerrit Grieb

In general, matrices for tissue engineering must maintain structural integrity during the process of tissue formation and promote vascularization of developing tissue. Therefore, collagen sponges, manufactured by an approach that offers the potential of unidirectional pore size, were seeded with human umbilical vein endothelial cells (HUVEC) to demonstrate a positive effect on cell proliferation. In addition, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) have been used to promote proliferation of HUVEC on optimized collagen sponges. Growth and viability of the cells were evaluated. Potential unidirectional pore structure demonstrated an improvement of both, endothelial cell growth and viability. Supplementation of growth factors showed an additional increase of endothelial cell growth on collagen sponges, which confirmed the high potential of combining this biomaterial with growth factors. The results suggest that a collagen sponge with a potential specific pore size could be a suitable scaffold for endothelial cells and might be a promising implantable biomaterial with enhanced angiogenic capabilities for future clinical applications.


2021 ◽  
Author(s):  
Shiho Hashiguchi ◽  
Tomoko Tanaka ◽  
Ryosuke Mano ◽  
Seiji Kondo ◽  
Shohta Kodama

Cellular communication network factor 2 (CCN2, also known as CTGF), is a modular and matricellular protein and a well-known angiogenic factor in physiological and pathological angiogenesis. However, its roles in lymphangiogenesis and intracellular signaling in lymphatic endothelial cells (LECs) remain unclear. Here, we investigated CCN2 signaling in LECs and its effects on lymphangiogenesis. In primary cultured LECs, gene expressions of lymphatic endothelial markers lymphatic vessel endothelial hyaluronan receptor 1 (Lyve1), Podoplanin and prospero homeobox 1 (Prox1) and lymphangiogenic factors vascular endothelial cell growth factor c (Vegfc), vascular endothelial cell growth factor d (Vegfd) and fms-related tyrosine kinase 4 (Flt4, also known as Vegfr3) were upregulated by CCN2. Subsequently, we found that CCN2 induced phospho-ERK and that was decreased by suppression of integrin v. CCN2 slightly decreased the growth of LECs due to enhancement of the interaction of ERK and dual specific protein phosphatase 6 (DUSP6), and knockdown of DUSP6 increased CCN2-induced phospho-ERK levels. In in vivo Matrigel plug assays, the number of Podoplanin-positive vessels was increased by exogenous CCN2, and phospho-ERK-positive LEC and DUSP6-positive LEC were detected in CCN2 plugs. These results suggest that CCN2-related lymphangiogenesis is regulated by DUSP6, which enables negative modulation of ERK-signaling.


Bone ◽  
2021 ◽  
Vol 146 ◽  
pp. 115883
Author(s):  
Fazal Ur Rehman Bhatti ◽  
Ushashi C. Dadwal ◽  
Conner R. Valuch ◽  
Nikhil P. Tewari ◽  
Olatundun D. Awosanya ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Xiaoying Zhao ◽  
Huzhong Zheng ◽  
Jun Chen

Abstract Background Dysregulated endothelial cell growth is involved in many types of human cancer, including cervical cancer. LncRNA GATA6-AS was reported to regulate endothelial cell growth, suggesting it might involve in cervical cancer. Our study was carried out to explore the involvement of GATA6-AS in cervical squamous cell carcinoma (CSCC), a subtype of cervical cancer. Methods To explore the expression of GATA6-AS, RT-qPCR was performed to detect GATA6-AS in plasma of 65 CSCC patients and 58 healthy females. To detect the expression of GATA6-AS, total RNAs were extracted. Results We found that plasma GATA6-AS expression was down-regulated in CSCC patients than that in healthy females, and HPV infection did not significantly affect the plasma expression of GATA6-AS. Moreover, we found that plasma GATA6-AS showed diagnostic values for CSCC by performing ROC curve analysis. The expression of miR-205 in plasma was also found to be up-regulated in CSCC patients than that in healthy females and inversely correlated with the expression of GATA6-AS in CSCC patients. Furthermore, over-expression of miR-205 did not significantly affect the expression of GATA6-AS in CSCC cells, while over-expression of GATA6-AS down-regulated miR-205 expression. In addition, GATA6-AS over-expression inhibited CSCC cell proliferation and promoted CSCC cell apoptosis, while miR-205 over-expression played opposite roles and attenuated the effects of GATA6-AS over-expression on CSCC cells. Conclusion Taken together, these results suggest that GATA6-AS may inhibit cell proliferation and promote cell apoptosis in CSCC by down-regulating miR-205.


Sign in / Sign up

Export Citation Format

Share Document