scholarly journals Qualitative and Quantitative Anatomy of the Human Quadriceps Tendon in Young Cadaveric Specimens

2021 ◽  
Vol 9 (9) ◽  
pp. 232596712110373
Author(s):  
Marc Strauss ◽  
Mitchell L. Kennedy ◽  
Alex Brady ◽  
Gilbert Moatshe ◽  
Jorge Chahla ◽  
...  

Background: A detailed understanding of the anatomy of the quadriceps tendon (QT) is clinically relevant, owing to its increased use as a graft in anterior cruciate ligament reconstruction. Purpose: To qualitatively and quantitatively describe the anatomy of the QT in younger adult specimens. Study Design: Descriptive laboratory study. Methods: A total of 18 nonpaired cadaveric knees with a mean age of 30.1 years (range, 18-38 years) were utilized for this study. A 3-dimensional coordinate measuring system was used to assess the structural relationships between the different layers of the QT and their attachments to the patella, and QT thickness was measured medially, centrally, and laterally at 2-cm intervals from the patellar eminence line (PEL; defined as a straight line between the medial and lateral patellar eminences) and proximally. Results: In all specimens, 3 distinct layers formed the QT. The first (superficial) layer was formed by the rectus femoris, which was fused to the second layer with an unclearly defined direct attachment to the patella. The median length of the QT was 86.9 mm (range, 68.4-98.9 mm). The second (middle) layer consisted of the vastus medialis and vastus lateralis and was found to have fibers running in an oblique direction that attached on the patella. A “fuse point,” where the proximal part of the rectus femoris started to merge to the second layer, was identified at a median of 48.7 mm (range, 27.9-62.6 mm) from the PEL. The third (deep) layer consisted of the vastus intermedius. The median thickness of the graft centrally at 20, 40, 60, 80, and 100 mm from the PEL was 8.5, 7.2, 7.5, 6.5, and 5.4 mm, respectively. Conclusion: Overall, 3 different layers of the QT were consistently found in all specimens. The first layer was fused with the second layer, and the direction of the fibers of the second layer or the vastus medialis and vastus lateralis was oblique. The median length of the QT was 86.9 mm, and the thickness of the tendon diminished proximally. Clinical Relevance: This study allows for a better understanding of QT anatomy when harvesting the tendon as a graft for ligamentous reconstruction.

Author(s):  
Anna L. Falkowski ◽  
Jon A. Jacobson ◽  
Michael T. Hirschmann ◽  
Vivek Kalia

Abstract Objective To characterize quadriceps femoris tendon tears on magnetic resonance (MR) imaging regarding tear extent, location, and presence of bony avulsion. Materials and methods IRB approval was obtained and informed consent was waived for this retrospective case series. Electronic medical records from all patients in our hospital system were searched for keywords: knee MR imaging, and quadriceps tendon rupture or tear. MRI studies were randomized and independently evaluated by two fellowship-trained musculoskeletal radiologists. MR imaging was used to characterize each individual quadriceps tendon as having tendinosis, tear (location, partial versus complete, size, and retraction distance), and bony avulsion. Knee radiographs were reviewed for presence or absence of bony avulsion. Descriptive statistics and inter-reader reliability (Cohen’s Kappa and Wilcoxon-signed-rank test) were calculated. Results Fifty-two patients with 53 quadriceps tears were evaluated (45 males, 7 females; mean age: 51 ± 13 years). The vastus intermedius (VI) tendon more often incurred a partial rather than a complete tear (39.6% vs. 37.7%), while the rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) incurred complete tears more commonly (64.2–66%). Subjects with bony avulsion on radiographs had higher-grade tears of the RF, VM, and VL tears (p = 0.020–0.043) but not the VI. Most tendons tore at or immediately proximal to the patella (84.8–93.6%). Gaps in retracted torn tendons measured between 2.3 and 2.7 cm. Inter-reader reliability was substantial to almost perfect (κ = 0.624–0.953). Conclusion Quadriceps femoris tendon tears most commonly involve the RF or VL/VM layers usually in proximity to the patella. A bony avulsion correlates with a more extensive tear. Key Points • Quadriceps femoris tendon tears most commonly involve the rectus femoris or vastus lateralis/vastus medialis layers. • A rupture of the quadriceps femoris tendon usually occurs in proximity to the patella. • A bony avulsion of the patella correlates with a more extensive tear of the superficial and middle layers of the quadriceps tendon.


2020 ◽  
pp. 1-6
Author(s):  
Steven M. Davi ◽  
Colleen K. Woxholdt ◽  
Justin L. Rush ◽  
Adam S. Lepley ◽  
Lindsey K. Lepley

Context: Traditionally, quadriceps activation failure after anterior cruciate ligament reconstruction (ACLR) is estimated using discrete isometric torque values, providing only a snapshot of neuromuscular function. Sample entropy (SampEn) is a mathematical technique that can measure neurologic complexity during the entirety of contraction, elucidating qualities of neuromuscular control not previously captured. Objective: To apply SampEn analyses to quadriceps electromyographic activity in order to more comprehensively characterize neuromuscular deficits after ACLR. Design: Cross-sectional. Setting: Laboratory. Participants: ACLR: n = 18; controls: n = 24. Interventions: All participants underwent synchronized unilateral quadriceps isometric strength, activation, and electromyography testing during a superimposed electrical stimulus. Main Outcome Measures: Group differences in strength, activation, and SampEn were evaluated with t tests. Associations between SampEn and quadriceps function were evaluated with Pearson product–moment correlations and hierarchical linear regressions. Results: Vastus medialis SampEn was significantly reduced after ACLR compared with controls (P = .032). Vastus medialis and vastus lateralis SampEn predicted significant variance in activation after ACLR (r2 = .444; P = .003). Conclusions: Loss of neurologic complexity correlates with worse activation after ACLR, particularly in the vastus medialis. Electromyographic SampEn is capable of detecting underlying patterns of variability that are associated with the loss of complexity between key neurophysiologic events after ACLR.


2001 ◽  
Vol 57 (2) ◽  
pp. 16-21 ◽  
Author(s):  
A. St Clair Gibson ◽  
M. I. Lambert ◽  
C. L. Vaughan ◽  
M. Lowery ◽  
M. J. O'Malley ◽  
...  

Aim: To assess electromyographic (EMG) gait pattern changes during stair descent in subjects with chronic anterior cruciate ligament (ACL) deficiency, and in subjects after ACL reconstruction.Methods: Thirteen ACL deficient subjects (ACLdef), 8 ACL reconstructed subjects (ACLrec), and 10 controls (CON) participated in the study. All subjects were assessed for functional and lean thigh volume (LTV) differences in the injured and uninjured limb. All subjects then stepped off a bench with EMG electrodes on the vastus medialis, vastus lateralis and hamstrings muscles of both limbs.Results: Step down activity caused similar EMG responses in the injured and supporting limb in the ACLdef group compared to that in the control group. In contrast, in the ACLrec group, the onset of EMG activity occurred earlier during the step down activity in the vastus medialis and vastus lateralis of the supporting limb. There was significantly greater EMG activity in the vastus lateralis and hamstring muscles of the supporting limb (p < 0.05) in the ACLrec group compared to ACLdef and control groups. The changes in EMG activity did not appear to be related to differences in LTV, since greater LTV deficits were present in the ACLdef compared to the ACLrec group (p < 0.01).Conclusions: In ACL reconstructed subjects, changes in muscle recruitment patterns in the supporting limb during step down activity have been identified. This altered activity pattern was not present in the supporting limb of ACL deficient subjects


2000 ◽  
Vol 89 (4) ◽  
pp. 1420-1424 ◽  
Author(s):  
Motoki Kouzaki ◽  
Minoru Shinohara ◽  
Tetsuo Fukunaga

The purpose of the study was to examine the effect of prolonged tonic vibration applied to a single synergist muscle on maximal voluntary contraction (MVC) and maximal rate of force development (dF/d t max). The knee extension MVC force and surface electromyogram (EMG) from the rectus femoris (RF), vastus lateralis (VL), and vastus medialis (VM) during MVC were recorded before and after vibration of RF muscle at 30 Hz for 30 min. MVC, dF/d t max, and the integrated EMG (iEMG) of RF decreased significantly after prolonged tonic vibration in spite of no changes in iEMG of VL and VM. The present results indicate that MVC and dF/d t max may be influenced by the attenuated Ia afferent functions of a single synergist muscle.


2021 ◽  
Author(s):  
Łukasz Olewnik ◽  
Kacper Ruzik ◽  
Bartłomiej Szewczyk ◽  
Michał Podgórski ◽  
Paloma Aragonés ◽  
...  

Abstract Introduction: The quadriceps femoris consists of four muscles: the rectus femoris, vastus medialis, vastus intermedius and vastus lateralis. However, the effect of additional quadriceps femoris heads on the vasti muscles and patellar ligaments is unknown.Materials and Methods: One hundred and six lower limbs (34 male and 19 female cadavers) fixed in 10% formalin were examined.Results: On all lower extremities, the vastus lateralis consisted of superficial, intermediate and deep layers. The vastus medialis, on the other hand, consisted of only the longus and obliquus layers. Additional quadriceps femoris heads affected both the vasti muscles and the patellar ligaments.Conclusion: There is a strong correlation between the presence of accessory quadriceps femoris heads and effects on vasti muscles and patellar ligament.


2021 ◽  
Vol 9 (10) ◽  
pp. 232596712110415
Author(s):  
Michael Letter ◽  
Andrew Beauperthuy ◽  
Rosalia L. Parrino ◽  
Kevin Posner ◽  
Michael G. Baraga ◽  
...  

Background: Quadriceps tendon (QT) autografts are increasingly popular for anterior cruciate ligament reconstruction (ACLR). However, no study has compared QT autografts with bone–patellar tendon–bone (BTB) autografts regarding the electromechanical delay (EMD), the peak torque (PT), and the rate of force development (RFD) in the superficial quadriceps muscles (rectus femoris [RF], vastus medialis [VM], and vastus lateralis [VL]). Hypotheses: We hypothesized (1) there would be a significantly lower PT, lower RFD, and longer quadriceps EMD of the operative limb for the QT versus the BTB autograft; (2) the PT, the RFD, and the quadriceps EMD of the operative limb would be significantly depressed compared with those of the nonoperative limb, regardless of the surgical technique; and (3) there would be greater increases in the RF EMD than in the VM or the VL EMD. Study Design: Cohort study; Level of evidence, 3. Methods: A total of 34 patients (age, 18-40 years), who had undergone ACLR (QT, n = 17; BTB, n = 17) at least 1 year before testing and performed 3 perceived maximal effort isometric tests, which were time synchronized with surface electromyography (EMG) on their operative and nonoperative limbs, were included in this study. EMD, PT, and RFD data were analyzed using a 2 (limb) × 2 (graft) × 3 (repetition) mixed repeated-measures analysis of variance. Results: The EMD, the PT, and the RFD were not significantly affected by graft choice. For the VL, a significant repetition × graft × limb interaction was detected for the VL EMD ( P = .027; ηp = 0.075), with repetition 3 having longer EMD than repetition 2 (mean difference [MD], 16 milliseconds; P = .039). For the RF EMD, there was a significant repetition × limb interaction ( P = .027; ηp = 0.074), with repetition 3 being significantly longer on the operative versus the nonoperative limb (MD, 24 milliseconds; P = .004). Further, the operative limb EMD was significantly longer for repetition 3 versus repetition 2 (MD, 17 milliseconds; P = .042). For the PT, there was a significant effect for repetition ( P = .003; ηp = 0.114), with repetition 1 being significantly higher than both repetitions 2 (MD, 8.52 N·m; P = .001) and 3 (MD, 7.79 N·m; P = .031). For the RFD, significant limb ( P = .034; ηp = 0.092) and repetition ( P = .010; ηp = 0.093) effects were seen, with the nonoperative limb being significantly faster than the operative limb (MD, 23.7 N·m/s; P = .034) and repetition 1 being significantly slower than repetitions 2 (MD, -20.46 N·m/s; P = .039) or 3 (MD, −29.85 N·m/s; P = .002). Conclusion: The EMD, the PT, and the RFD were not significantly affected by graft type when comparing QT and BTB autografts for ACLR; however, all neuromuscular variables were affected regardless of the QT or the BTB harvest.


Sign in / Sign up

Export Citation Format

Share Document