scholarly journals The Relationship Between Additional Heads of the Quadriceps Femoris, the Vasti Muscles and the Patellar Ligament

Author(s):  
Łukasz Olewnik ◽  
Kacper Ruzik ◽  
Bartłomiej Szewczyk ◽  
Michał Podgórski ◽  
Paloma Aragonés ◽  
...  

Abstract Introduction: The quadriceps femoris consists of four muscles: the rectus femoris, vastus medialis, vastus intermedius and vastus lateralis. However, the effect of additional quadriceps femoris heads on the vasti muscles and patellar ligaments is unknown.Materials and Methods: One hundred and six lower limbs (34 male and 19 female cadavers) fixed in 10% formalin were examined.Results: On all lower extremities, the vastus lateralis consisted of superficial, intermediate and deep layers. The vastus medialis, on the other hand, consisted of only the longus and obliquus layers. Additional quadriceps femoris heads affected both the vasti muscles and the patellar ligaments.Conclusion: There is a strong correlation between the presence of accessory quadriceps femoris heads and effects on vasti muscles and patellar ligament.

Author(s):  
Yuta Sekine ◽  
Norikazu Hirose

Abstract Background This study examines age-related changes in the quadriceps femoris (QF), subdivided into the vastus medialis oblique (VMO), vastus medialis (VM), rectus femoris (RF), vastus intermedius (VI) and vastus lateralis (VL) in basketball players. Subjects Seventy male basketball players were divided into four groups according to age (12–13, 14–15, 16–17, and 18–20 years). Methods Ultrasonography was used to measure muscle architecture of the VMO, VM, RF, VI and VL. We created cubic approximate expressions and calculated inflexion points to evaluate peak growth age of each muscle head. Results Significant interactions were observed for all QF parts (p < 0.01–0.001). Muscle thickness (MT) in all QF parts was significantly lower in 12–13-year olds than in 18–20-year olds (p < 0.01–0.001). Significant differences were recognised between 12–13 and 16–17-year olds in VM (p < 0.001), RF (p < 0.001) and VL (p = 0.007). MT was significantly lower in 14–15-year olds than in 16–17-year olds in the VM (p = 0.007) and RF (p = 0.026) and in 18–20 year olds in the VM (p < 0.001), RF (p = 0.036) and VI (p < 0.001). Peak growth age was estimated for each QF part (VMO, 155.0 months; VM, 187.8 months; RF, 212.2 months, VI, 188.9 months; VL, 181.1 months). Conclusion QF parts have different growth rates due to differing functions in each muscle head.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Femina Sam ◽  
Madhavi Kandagaddala ◽  
Ivan James Prithishkumar ◽  
Koyeli Mary Mahata ◽  
Mahasampath Gowri ◽  
...  

AbstractQuadriceps femoris is an extensor muscle in the anterior compartment of thigh and is traditionally taught to be composed of four heads. Recently, there is an increased interest in the occurrence of an additional muscle head of quadriceps femoris. But scientific knowledge regarding its incidence is lacking in the South Indian population. This study was done to confirm the presence of the additional head by routine anatomic dissection and radiological imaging techniques. Forty-one formalin fixed human cadaveric lower limbs were dissected and the morphology of the additional head was noted. Retrospective analysis of 88 MRI images of patients was done. The additional muscle head was present in 43.9% of the cadaveric lower limbs and was consistently located between the vastus lateralis and vastus intermedius. It originated from variable portions of the greater trochanter, intertrochanteric line, lateral lip of linea aspera and lateral surface of the shaft of femur and inserted either as a muscle belly or as an aponeurosis into the vastus intermedius (55.6%), vastus lateralis (22.2%) or directly into the base of the patella. It received its vascular supply from branches of the lateral circumflex femoral artery and was innervated by branches from the posterior division of the femoral nerve. In addition, the additional muscle head was identified by MRI and its incidence was reported to be 30.68% for the first time in living subjects. The result of this study provides additional information in understanding the morphology of the quadriceps femoris muscle.


2001 ◽  
Vol 90 (6) ◽  
pp. 2070-2074 ◽  
Author(s):  
T. A. Trappe ◽  
D. M. Lindquist ◽  
J. A. Carrithers

We examined the size of the four muscles of the quadriceps femoris in young and old men and women to assess whether the vastus lateralis is an appropriate surrogate for the quadriceps femoris in human studies of aging skeletal muscle. Ten young (24 ± 2 yr) and ten old (79 ± 7 yr) sedentary individuals underwent magnetic resonance imaging of the quadriceps femoris after 60 min of supine rest. Volume (cm3) and average cross-sectional area (CSA, cm2) of the rectus femoris (RF), vastus lateralis (VL), vastus intermedius (VI), vastus medialis (VM), and the total quadriceps femoris were decreased ( P < 0.05) in older compared with younger women and men. However, percentage of the total quadriceps femoris taken up by each muscle was similar ( P > 0.05) between young and old (RF: 10 ± 0.3 vs. 11 ± 0.4; VL: 33 ± 1 vs. 33 ± 1; VI: 31 ± 1 vs. 31 ± 0.4; VM: 26 ± 1 vs. 25 ± 1%). These results suggest that each of the four muscles of the quadriceps femoris atrophy similarly in aging men and women. Our data support the use of vastus lateralis tissue to represent the quadriceps femoris muscle in aging research.


1987 ◽  
Vol 130 (1) ◽  
pp. 341-358 ◽  
Author(s):  
F. C. ANAPOL ◽  
W. L. JUNGERS

Quantitative telemetered electromyography from the four heads of the quadriceps femoris (vastus medialis, rectus femoris, vastus intermedius and vastus lateralis) during normal postures and locomotion (quadrupedal resting, walk/run, gallop and leaping) is presented for the brown lemur, Lemur fulvus. The vastus intermedius is the sole contributor to muscle recruitment during quadrupedal resting postures. It exhibits consistently high levels of electrical activity during all locomotory behaviour. The vastus medialis is recruited least among these muscles during walk/run and tends to be ‘saved’ for galloping and leaping. The rectus femoris and vastus lateralis are recruited at similarly high levels during all phasic activities. The rectus femoris appears to be used eccentrically, storing ‘elastic strain energy’ during all phasic activities. The vastus lateralis combines exceptionally high potential effective force with relatively high potential velocity and resistance to fatigue and probably develops the majority of force in all phasic activities. These results support previously documented structural and histochemical data that imply a functional division of labour among these muscle synergists.


2002 ◽  
Vol 124 (6) ◽  
pp. 758-767 ◽  
Author(s):  
Yasin Y. Dhaher ◽  
Leonard E. Kahn

A mathematical model of the patello-femoral joint was introduced to investigate the impact of the vastus medialis (longus, obliquus) forces on the lateral contact force levels. In the model, the quadriceps were represented as five separate forces: vastus lateralis, vastus intermedius, rectus femoris, vastus medialis longus (VML), and obliquus (VMO). By varying the relative force generation ratios of the quadriceps heads, the patello-femoral contact forces were estimated. We sought to analytically determine the range of forces in the VMO and VML that cause a reduction or an increase of lateral contact forces, often the cause of patello-femoral pain. Our results indicated that increased contact forces are more dependent on combinations of muscle forces than solely VMO weakness. Moreover, our simulation data showed that the contact force levels are also highly dependent on the knee flexion angle. These findings suggest that training targeted to reduce contact forces through certain joint angles could actually result in a significant increase of the contact forces through other joint angles.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259039
Author(s):  
Raki Kawama ◽  
Masamichi Okudaira ◽  
Tatsuya Shimasaki ◽  
Hirohiko Maemura ◽  
Satoru Tanigawa

Numerous studies have clarified that sprinters possess unique morphological characteristics of the thigh muscles compared with non-athletes. However, little evidence is available regarding the morphological differences between sprinters and rugby players. This study aimed to examine the morphological differences in the individual hamstrings and quadriceps femoris muscles between sub-elite sprinters and rugby players. Ultrasound images were acquired from the proximal, middle, and distal regions of the thigh. From the images, the anatomical cross-sectional areas were calculated for 14 sub-elite sprinters, 14 rugby players, and 14 non-athletes. The calculated anatomical cross-sectional areas were normalized to two-thirds power of the body mass, and the normalized values of all regions were averaged as those of the individual muscles. In the hamstrings, the sizes of the biceps femoris short head and semitendinosus were greater in the sprinters than in the rugby players and/or non-athletes (all p < 0.05). In contrast, in the quadriceps femoris, the sizes of the rectus femoris, vastus lateralis, and vastus intermedius were the greatest in the rugby players (all p < 0.05). In the middle region of the biceps femoris short head and the proximal-middle regions of the semitendinosus, the muscle sizes were greater in the sprinters than in the rugby players (all p < 0.05), and vice versa in the middle-distal regions of the rectus femoris (all p < 0.05). These results suggest that 1) sub-elite sprinters possess larger sizes of the biceps femoris short head and semitendinosus, whereas rugby players have larger sizes of the rectus femoris, vastus lateralis, and vastus intermedius, and 2) each of the athletes has different size distributions, especially along the lengths of BFsh, ST, and RF. The findings of the present study would be helpful for rugby players in designing training regimens aimed at enhancing sprint performance.


Author(s):  
Anna L. Falkowski ◽  
Jon A. Jacobson ◽  
Michael T. Hirschmann ◽  
Vivek Kalia

Abstract Objective To characterize quadriceps femoris tendon tears on magnetic resonance (MR) imaging regarding tear extent, location, and presence of bony avulsion. Materials and methods IRB approval was obtained and informed consent was waived for this retrospective case series. Electronic medical records from all patients in our hospital system were searched for keywords: knee MR imaging, and quadriceps tendon rupture or tear. MRI studies were randomized and independently evaluated by two fellowship-trained musculoskeletal radiologists. MR imaging was used to characterize each individual quadriceps tendon as having tendinosis, tear (location, partial versus complete, size, and retraction distance), and bony avulsion. Knee radiographs were reviewed for presence or absence of bony avulsion. Descriptive statistics and inter-reader reliability (Cohen’s Kappa and Wilcoxon-signed-rank test) were calculated. Results Fifty-two patients with 53 quadriceps tears were evaluated (45 males, 7 females; mean age: 51 ± 13 years). The vastus intermedius (VI) tendon more often incurred a partial rather than a complete tear (39.6% vs. 37.7%), while the rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) incurred complete tears more commonly (64.2–66%). Subjects with bony avulsion on radiographs had higher-grade tears of the RF, VM, and VL tears (p = 0.020–0.043) but not the VI. Most tendons tore at or immediately proximal to the patella (84.8–93.6%). Gaps in retracted torn tendons measured between 2.3 and 2.7 cm. Inter-reader reliability was substantial to almost perfect (κ = 0.624–0.953). Conclusion Quadriceps femoris tendon tears most commonly involve the RF or VL/VM layers usually in proximity to the patella. A bony avulsion correlates with a more extensive tear. Key Points • Quadriceps femoris tendon tears most commonly involve the rectus femoris or vastus lateralis/vastus medialis layers. • A rupture of the quadriceps femoris tendon usually occurs in proximity to the patella. • A bony avulsion of the patella correlates with a more extensive tear of the superficial and middle layers of the quadriceps tendon.


2002 ◽  
Vol 92 (2) ◽  
pp. 679-684 ◽  
Author(s):  
Hiroshi Akima ◽  
Jeanne M. Foley ◽  
Barry M. Prior ◽  
Gary A. Dudley ◽  
Ronald A. Meyer

This study tested the hypothesis that fatigue of a single member of musculus quadriceps femoris (QF) would alter use of the other three muscles during knee extension exercise (KEE). Six men performed KEE with the left QF at a load equal to 50% of the 4 × 10 repetitions maximum. Subsequently, electromyostimulation (EMS), intended to stimulate and fatigue the left m. vastus lateralis (VL), was applied for 30 min. Immediately after EMS, subjects repeated the KEE. Transverse relaxation time (T2)-weighted magnetic resonance images were taken before and after each bout of KEE and at 3 and 30 min of EMS to assess use and stimulation, respectively, of the QF. T2 of each of the QF muscles was increased 8–13% after the first KEE. During EMS, T2 increased ( P < 0.05) even more in VL (10%), whereas it decreased ( P < 0.05) to pre-KEE levels in m. vastus medials (VM) and m. rectus femoris (RF). The VL and, to some extent, the m. vastus intermedius were stimulated, whereas the VM and RF were not, thereby recovering from the first bout of KEE. Isometric torque, initially 30% of maximal voluntary, was reduced to 13% at 3 min and 7% at 30 min. T2 was greater ( P < 0.05) after the second than the first bout of KEE, especially the increase for the VM and RF. These results suggest that subjects were able to perform the second bout with little contribution of the VL by greater use of the other QF muscles. The simplest explanation is increased central command to the QF such that the intended act could be accomplished despite acute fatigue of one of its synergists.


2016 ◽  
Vol 33 (02) ◽  
pp. 112-117
Author(s):  
S. Chavan ◽  
R. Wabale

Abstract Purpose: Quadriceps is composite muscle of four portions rectus femoris, vastus intermedius, vastus medialis and vatus lateralis. It is inserted into patella through common tendon with three layered arrangement rectus femoris superficially, vastus lateralis and vatus medialis in the intermediate layer and vatus intermedius deep to it. Most literatures do not take into account its complex and variable morphology while describing the extensor mechanism of knee, and wide functional role it plays in stability of knee joint. It has been widely studied clinically, mainly individually in foreign context, but little attempt has been made to look into morphology of quadriceps group. The diverse functional aspect of quadriceps group, and the gap in the literature on morphological aspect particularly in our region what prompted us to review detail morphology of this group. Method: Study consisted dissection of 40 lower limbs (20 rights and 20 left) from 20 embalmed cadavers from Department of Anatomy Rural Medical College, PIMS Loni, Ahmednagar (M) India. Results: Rectus femoris was a separate entity in all the cases. Vastus medialis as well as vastus lateralis found to have two parts, as oblique and longus. Quadriceps group had variability in fusion between members of the group. The extent of fusion also varied greatly. The laminar arrangement of Quadriceps group found as bilaminar or trilaminar. The insertion level of vastus medialis and vastus lateralis on patella varied greatly. Vastus lateralis found to extent to whole extent of lateral border of patella. The extension of fibrous band like structure from lower horizontal fibers of vastus medialis to adductor tubercle also noticed in one case. Conclusion: There is wide variability in the quadriceps group of muscles that we came across, then believed. This variability in the quadriceps group might affect the stability of the knee joint but needs, to prove clinically. The inding may also help in the understanding the factors associated with anterior knee pain and its management.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lu Zongxing ◽  
You Shengxian ◽  
Wei Xiangwen ◽  
Chen Xiaohui ◽  
Jia Chao

Background. Many sports and physical activities can result in lower limb injures. Pedaling is an effective exercise for lower extremity rehabilitation, but incorrect technique may cause further damage. To some extent, previous experiments have been susceptible to bias in the sample recruited for the study. Alternatively, methods used to simulation activities can enable parametric studies without the influence of noise. In addition, models can facilitate the study of all muscles in the absence of the effects of fatigue. This study investigated the effects of crank length on muscle behavior during pedaling. Methods. Six muscles (soleus, tibialis anterior, vastus medialis, vastus lateralis, gastrocnemius, and rectus femoris), divided into three groups (ankle muscle group, knee muscle group, and biarticular muscle group), were examined under three cycling crank lengths (100 mm, 125 mm, and 150 mm) in the present study. In addition, the relationship between crank length and muscle biological force was analyzed with the AnyBody Modeling System™, a human simulation modeling software based on the Hill-type model. Findings. Based on inverse kinematic analysis, the results indicate that muscle activity and muscle force decrease in varying degrees with increases in crank length. The maximum and minimum muscular forces were attained in the tibialis anterior and vastus lateralis, respectively. Interpretation. Studying the relationship between muscle and joint behavior with crank length can help rehabilitation and treating joint disorders. This study provides the pedal length distribution areas for patients in the early stages of rehabilitation.


Sign in / Sign up

Export Citation Format

Share Document