scholarly journals Stepwise segmentation error correction in optical coherence tomography angiography images of patients with diabetic macular edema

2020 ◽  
Vol 12 ◽  
pp. 251584142094793
Author(s):  
Khalil Ghasemi Falavarjani ◽  
Reza Mirshahi ◽  
Shahriar Ghasemizadeh ◽  
Mahsa Sardarinia

Aim: To determine the minimum number of optical coherence tomography B-scan corrections required to provide acceptable vessel density measurements on optical coherence tomography angiography images in eyes with diabetic macular edema. Methods: In this prospective, noninterventional case series, the optical coherence tomography angiography images of eyes with center-involving diabetic macular edema were assessed. Optical coherence tomography angiography imaging was performed using RTVue Avanti spectral-domain optical coherence tomography system with the AngioVue software (V.2017.1.0.151; Optovue, Fremont, CA, USA). Segmentation error was recorded and manually corrected in the inner retinal layers in the central foveal, 100th and 200th optical coherence tomography B-scans. The segmentation error correction was then continued until all optical coherence tomography B-scans in whole en face image were corrected. At each step, the manual correction of each optical coherence tomography B-scan was propagated to whole image. The vessel density and retinal thickness were recorded at baseline and after each optical coherence tomography B-scan correction. Results: A total of 36 eyes of 26 patients were included. To achieve full segmentation error correction in whole en face image, an average of 1.72 ± 1.81 and 5.57 ± 3.87 B-scans was corrected in inner plexiform layer and outer plexiform layer, respectively. The change in the vessel density measurements after complete segmentation error correction was statistically significant after inner plexiform layer correction. However, no statistically significant change in vessel density was found after manual correction of the outer plexiform layer. The vessel density measurements were statistically significantly different after single central foveal B-scan correction of inner plexiform layer compared with the baseline measurements ( p = 0.03); however, it remained unchanged after further segmentation corrections of inner plexiform layer. Conclusion: Multiple optical coherence tomography B-scans should be manually corrected to address segmentation error in whole images of en face optical coherence tomography angiography in eyes with diabetic macular edema. Correction of central foveal B-scan provides the most significant change in vessel density measurements in eyes with diabetic macular edema.

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244789
Author(s):  
Gilda Cennamo ◽  
Daniela Montorio ◽  
Federica Fossataro ◽  
Claudia Fossataro ◽  
Fausto Tranfa

Purpose To evaluate the retinal vessel density (VD) in the macular region and the foveal avascular zone (FAZ) area using optical coherence tomography angiography (OCTA) in patients with and without disorganization of retinal inner layers (DRILs) after resolution of diabetic macular edema. Methods Thirty-seven eyes of 37 DRIL patients (mean age 63 ± 13.97 years), 30 eyes of 30 no DRIL patients and 35 eyes of 35 controls were enrolled in this study. We evaluated the VD in the macular region of superficial capillary plexus (SCP), deep capillary plexus (DCP) and FAZ area. Results DRIL and no DRIL groups showed decreased VD in SCP and DCP (p<0.05) and a larger FAZ area (p<0.001) compared to controls. However, DRIL patients revealed a statistically significant reduction in VD of SCP (p = 0.041) and a greater FAZ area (p<0.001) with respect to no DRIL patients. We found a significant negative correlation between the VD of the foveal SCP (r = -0.414, p = 0.011), foveal DCP (r = -0.358, p = 0.025) and best corrected visual acuity (BCVA) in DRIL group. Moreover there was a significant positive correlation between the FAZ area (r = 0.425, p = 0.034) and BCVA. Therefore, in presence of DRILs lower VD values of SCP and DCP and a larger FAZ area correlated with a worse visual acuity. In no DRILs group, there was a significant negative correlation between the VD of the foveal DCP and BCVA. Conclusion OCTA highlights the role of retinal vascular ischemia in the pathogenesis of DRILs. This parameter could represent an important functional predictive factor in diabetic patients.


Retina ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 820-827 ◽  
Author(s):  
Julia Hafner ◽  
Sonja Prager ◽  
Jan Lammer ◽  
Katharina Kriechbaum ◽  
Christoph Scholda ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Atsushi Fujiwara ◽  
Yuki Kanzaki ◽  
Shuhei Kimura ◽  
Mio Hosokawa ◽  
Yusuke Shiode ◽  
...  

AbstractThis retrospective study was performed to classify diabetic macular edema (DME) based on the localization and area of the fluid and to investigate the relationship of the classification with visual acuity (VA). The fluid was visualized using en face optical coherence tomography (OCT) images constructed using swept-source OCT. A total of 128 eyes with DME were included. The retina was segmented into: Segment 1, mainly comprising the inner nuclear layer and outer plexiform layer, including Henle’s fiber layer; and Segment 2, mainly comprising the outer nuclear layer. DME was classified as: foveal cystoid space at Segment 1 and no fluid at Segment 2 (n = 24), parafoveal cystoid space at Segment 1 and no fluid at Segment 2 (n = 25), parafoveal cystoid space at Segment 1 and diffuse fluid at Segment 2 (n = 16), diffuse fluid at both segments (n = 37), and diffuse fluid at both segments with subretinal fluid (n = 26). Eyes with diffuse fluid at Segment 2 showed significantly poorer VA, higher ellipsoid zone disruption rates, and greater central subfield thickness than did those without fluid at Segment 2 (P < 0.001 for all). These results indicate the importance of the localization and area of the fluid for VA in DME.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-Il Shin ◽  
Ki Yup Nam ◽  
Seong Eun Lee ◽  
Min-Woo Lee ◽  
Hyung-Bin Lim ◽  
...  

Abstract To evaluate changes in peripapillary microvascular parameters in diabetes mellitus (DM) patients using optical coherence tomography angiography (OCTA). Seventy-one diabetic patients (40 in the no diabetic retinopathy [DR] group and 31 in the non-proliferative DR [NPDR] group) and 50 control subjects. OCTA (Zeiss HD-OCT 5000 with AngioPlex) 6 × 6 mm scans centered on the optic disc were analyzed. Peripapillary vessel density (VD), perfusion density (PD) in superficial capillary plexus (SCP) were automatically calculated. The average macular ganglion cell-inner plexiform layer (mGC-IPL) and peripapillary retinal nerve fiber layer (pRNFL) thicknesses of the no DR and NPDR groups were significantly thinner than those of the control group. The no DR and NPDR groups showed lower peripapillary VD and PD in SCP compared with the control group. Using univariate regression analyses, the average mGC-IPL thickness, the pRNFL thickness, the no DR group and NPDR group were significant factors that affected the peripapillary VD and PD in SCP. Multivariate regression analyses showed that the grade of DR was a significant factor affecting the peripapillary VD and PD in SCP. OCTA revealed that peripapillary microvascular parameters in the no DR and NPDR groups were lower than those of normal controls. The peripapillary VD and PD in SCP were correlated with the mGC-IPL thickness, the pRNFL thickness, and the no DR and NPDR groups. Changes in peripapillary OCTA parameters may help with understanding the pathophysiology of DM and evaluating a potentially valuable biomarker for patients with subclinical DR.


2017 ◽  
Vol 102 (3) ◽  
pp. 352-357 ◽  
Author(s):  
Jayasree P Venugopal ◽  
Harsha L Rao ◽  
Robert N Weinreb ◽  
Zia S Pradhan ◽  
Srilakshmi Dasari ◽  
...  

AimsTo compare the intrasession repeatability of peripapillary and macular vessel density measurements of optical coherence tomography angiography (OCTA) in normal and glaucoma eyes, and to evaluate the effect of signal strength of OCTA scans on the repeatability.MethodsIn a cross-sectional study, three optic nerve head scans each of 65 eyes (30 normal, 35 glaucoma eyes) and three macular scans each of 69 eyes (35 normal, 34 glaucoma eyes) acquired in the same session with OCTA were analysed. Repeatability was assessed using within-subject coefficient of repeatability (CRw) and variation (CVw). Effect of signal strength index (SSI) on repeatability was evaluated with repeated-measures mixed-effects models.ResultsCRw (%) and CVw (%) of peripapillary measurements in normal eyes ranged between 3.3 and 7.0, and 2.5 and 4.4 respectively, and that in glaucoma eyes between 3.5 and 7.1, and 2.6 and 6.6. For the macular, these measurements ranged between 4.1 and 6.0, and 3.3 and 4.7 in normal eyes and 4.3 and 6.9, and 3.7 and 5.6 in glaucoma eyes. Repeatability estimates of most measurements were similar in normal and glaucoma eyes. Vessel densities of both peripapillary and macular regions significantly increased with increase in SSI of repeat scans (coefficients ranging from 0.15 to 0.38, p<0.01 for all associations).ConclusionsRepeatability estimates of OCTA measured peripapillary and macular vessel densities were similar in normal eyes and eyes with glaucoma. SSI values of the scans had a significant effect on the repeatability of OCTA with the vessel density values increasing in scans with higher SSI values.


Sign in / Sign up

Export Citation Format

Share Document