scholarly journals Significance of tungsten disulfide on the mechanical and machining characteristics of phosphor bronze metal matrix composite

2020 ◽  
Vol 29 ◽  
pp. 2633366X2096249 ◽  
Author(s):  
P Sangaravadivel ◽  
G Rajamurugan ◽  
Prabu Krishnasamy

The phosphor bronze (PB) is widely preferred in various engineering applications due to its high strength, toughness, fine grain size, low coefficient of friction, and better corrosion resistance. The present work is to investigate the effect of tungsten disulfide (WS2) solid lubricant particle reinforcement in the phosphor bronze metal matrix composite (PBMC) through the mechanical and machining characteristics. The different variant of the composite is fabricated using stir casting technique by varying the volume percentage of WS2 particle from 0% to10%. The prepared PBMC samples are subjected to mechanical and machining (boring and high-speed turning) characterizations. The hardness (Brinell hardness) and flexural strength of the composites are examined as per the ASTM standard. The surface roughness (Ra) of the PBMC sample is analyzed through the boring and high-speed turning operations by varying the spindle speed, feed rate, and depth of cut. The scanning electron microscope (SEM) is employed to confirm the uniform dispersion of the reinforcement particle through the microstructural analysis. The presence of WS2 particles and other ingredients is ensured by X-ray diffraction analysis in the composites. The influence of WS2 reinforcement particles on tool life is analyzed on the PBMC4 (PBMC with 8% WS2) with the predefined machining parameters in the high-speed turning operation. The increase in WS2 particle (0–10%) improves the hardness (11.85%) and flexural strength in PBMC4 as compared to PBMC1 (PBMC with 0% WS2). At a higher spindle speed (1200 r/min), the Ra is reduced in PBMC1 as compared to 900 r/min, whereas the rest of the PBMC sample show higher surface irregularity at 1200 r/min.

2018 ◽  
Vol 7 (2) ◽  
pp. 764
Author(s):  
Pothamsetty Kasi V Rao ◽  
B Raghu Kumar ◽  
B Sudheer Kumar ◽  
G Phanindra Swamy ◽  
Y Ganga Raju ◽  
...  

Metal matrix nano-composites are grabbing more attention by many researchers in the recent years as they exhibit outstanding properties when compared to pure metal alloys. In the present study Aluminium Alloy 7075 was selected as the matrix and carbon nanotubes was selected as reinforcing element to investigate the percentage enhancement of flexural strength and impact strength of metal matrix composite. Stir casting process was selected to fabricate the specimens. The multi walled carbon nanotubes with different weight percentages (0.5, 1.0, 2.0, 5.0 wt %) were selected to prepare the AA7075-CNT metal matrix composite.  Microstructure and dispersion of CNT was examined using Scanning Electron Microscope (SEM) with EDX. The experimental results of mechanical tests showed that if the MWCNTs particle content increases considerably flexural strength and impact strength also increases about 125% and 90% respectively. Thus the AA7075-CNT metal matrix can be used in automobile and aerospace applications under high load conditions.


2017 ◽  
Vol 4 (10) ◽  
pp. 10779-10785 ◽  
Author(s):  
S. Prashantha ◽  
R.B. Veeresha ◽  
S.M. Shashidhara ◽  
U.S. Mallikarjun ◽  
A.G. Shivasiddaramaiah

Author(s):  
Bharat Chandra Routara ◽  
Rajesh Kumar Bhuyan ◽  
Arun Kumar Parida

The objective of this paper is to find the optimum combination on different machining characteristics during electrical discharge machining process of Al-12%SiC Metal matrix composite. Central composite design (CCD) method is used to investigate the effect of three process parameters such as peak current (Ip), pulse on time (Ton), flushing pressure (Fp) on the four response parameters like Material removal rate (MRR), Tool wear rate (TWR), Radial over cut (ROC) and Surface roughness (SR). The multiple objective problems of machining characteristics are optimized by a combine approach of Technique for order preference by similarity to an ideal solution (TOPSIS) and entropy weight measurement method. The Analysis of Variance (ANOVA) is implemented to identify the statistically significant of the Closeness-coefficient results. Finally confirmation test is conducted to compare the experimental data and the predicted data at its optimum parameter to identify the effectiveness of the proposed method.


2014 ◽  
Vol 6 ◽  
pp. 854-862
Author(s):  
Mohd Hadzley Abu Bakar ◽  
Raja Izamshah Raja Abdullah ◽  
Mohd Amran Md. Ali ◽  
Mohd Shahir Kasim ◽  
Mohd Amri Sulaiman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document