scholarly journals Subtype-specific expression patterns of inositol 1,4,5-trisphosphate receptors in rat airway epithelial cells.

1996 ◽  
Vol 44 (11) ◽  
pp. 1237-1242 ◽  
Author(s):  
T Sugiyama ◽  
M Yamamoto-Hino ◽  
K Wasano ◽  
K Mikoshiba ◽  
M Hasegawa

We investigated the immunohistochemical localization of inositol 1,4,5-trisphosphate receptor (IP3R) Types 1, 2, and 3 in rat airway epithelium using the monoclonal antibodies KM1112, KM1083, and KM1082 specific for each type of IP3R. The epithelium from trachea to distal intrapulmonary airways (bronchioles) showed positive immunoreactivity for all types of IP3R. However, cell type as well as subcellular site immunoreactivity for each type of IP3R varied. IP3R Type 1 was found only in the apical thin cytoplasmic area of ciliated cells throughout all airway levels. IP3R Type 2 was exclusively localized to the entire cytoplasm of ciliated cells from the trachea to bronchioles. IP3R Type 3 was expressed mainly in the supranuclear cytoplasm not only of ciliated cells at all airway levels but also in Clara cells of the bronchiolar epithelium. Double fluorescent staining using combinations of KM1083 and Wisteria floribunda lectin or anti-rat 10-KD Clara cell-specific protein antibody confirmed that the IP3R Type 2-positive cells were neither seromucous cells nor Clara cells. These results indicate that the expression of three types of IP3Rs in different cell types and subcellular sites may reflect diverse physiological functions of IP3Rs within airway epithelial cells. The double staining studies suggested that the anti-IP3R Type 2 monoclonal antibody KM1083 would be a specific cell marker for ciliated cells of the airway epithelium.

2000 ◽  
Vol 279 (2) ◽  
pp. L379-L389 ◽  
Author(s):  
Dennis W. McGraw ◽  
Susan L. Forbes ◽  
Judith C. W. Mak ◽  
David P. Witte ◽  
Patricia E. Carrigan ◽  
...  

Airway epithelial cells express β2-adrenergic receptors (β2-ARs), but their role in regulating airway responsiveness is unclear. With the Clara cell secretory protein (CCSP) promoter, we targeted expression of β2-ARs to airway epithelium of transgenic (CCSP-β2-AR) mice, thereby mimicking agonist activation of receptors only in these cells. In situ hybridization confirmed that transgene expression was confined to airway epithelium, and autoradiography showed that β2-AR density in CCSP-β2-AR mice was approximately twofold that of nontransgenic (NTG) mice. Airway responsiveness measured by whole body plethysmography showed that the methacholine dose required to increase enhanced pause to 200% of baseline (ED200) was greater for CCSP-β2-AR than for NTG mice (345 ± 34 vs. 157 ± 14 mg/ml; P < 0.01). CCSP-β2-AR mice were also less responsive to ozone (0.75 ppm for 4 h) because enhanced pause in NTG mice acutely increased to 77% over baseline ( P < 0.05) but remained unchanged in the CCSP-β2-AR mice. Although both groups were hyperreactive to methacholine 6 h after ozone exposure, the ED200for ozone-exposed CCSP-β2-AR mice was equivalent to that for unexposed NTG mice. These findings show that epithelial cell β2-ARs regulate airway responsiveness in vivo and that the bronchodilating effect of β-agonists results from activation of receptors on both epithelial and smooth muscle cells.


1992 ◽  
Vol 263 (1) ◽  
pp. L122-L127
Author(s):  
M. R. Van Scott ◽  
A. M. Paradiso

We investigated whether Ca2+ was involved in regulation of ion transport across rabbit distal airway epithelial cells by studying the effects that elevation of intracellular Ca2+ (Cai) had on the bioelectric properties of nonciliated bronchiolar (Clara) cell epithelia in culture. Exposure of Clara cells to 5 x 10(-7) M ionomycin increased Cai concentration and transepithelial short-circuit current (Isc). Changing extracellular Ca2+ concentration in the presence of ionomycin demonstrated that changes in Isc paralleled changes in Cai. Another ionophore, 4-bromo-A23187, also increased Cai and Isc. Ionomycin-induced changes in Isc were insensitive to amiloride and were inhibited greater than 50% by pretreating the cells with bumetanide or substituting gluconate for Cl- in the bathing solution. Bradykinin and carbachol, which increased Cai and caused an increase in Isc across tracheal cell cultures, had no effect on Cai or Isc in Clara cell preparations. These results support the hypothesis that changes in Cai are linked to regulation of Cl- secretion across bronchiolar epithelial cells, but physiological regulators of Cai in Clara cells remain to be defined.


2002 ◽  
Vol 76 (11) ◽  
pp. 5654-5666 ◽  
Author(s):  
Liqun Zhang ◽  
Mark E. Peeples ◽  
Richard C. Boucher ◽  
Peter L. Collins ◽  
Raymond J. Pickles

ABSTRACT Gene therapy for cystic fibrosis (CF) lung disease requires efficient gene transfer to airway epithelial cells after intralumenal delivery. Most gene transfer vectors so far tested have not provided the efficiency required. Although human respiratory syncytial virus (RSV), a common respiratory virus, is known to infect the respiratory epithelium, the mechanism of infection and the epithelial cell type targeted by RSV have not been determined. We have utilized human primary airway epithelial cell cultures that generate a well-differentiated pseudostratified mucociliary epithelium to investigate whether RSV infects airway epithelium via the lumenal (apical) surface. A recombinant RSV expressing green fluorescent protein (rgRSV) infected epithelial cell cultures with high gene transfer efficiency when applied to the apical surface but not after basolateral inoculation. Analyses of the cell types infected by RSV revealed that lumenal columnar cells, specifically ciliated epithelial cells, were targeted by RSV and that cultures became susceptible to infection as they differentiated into a ciliated phenotype. In addition to infection of ciliated cells via the apical membrane, RSV was shed exclusively from the apical surface and spread to neighboring ciliated cells by the motion of the cilial beat. Gross histological examination of cultures infected with RSV revealed no evidence of obvious cytopathology, suggesting that RSV infection in the absence of an immune response can be tolerated for >3 months. Therefore, rgRSV efficiently transduced the airway epithelium via the lumenal surface and specifically targeted ciliated airway epithelial cells. Since rgRSV appears to breach the lumenal barriers encountered by other gene transfer vectors in the airway, this virus may be a good candidate for the development of a gene transfer vector for CF lung disease.


1995 ◽  
Vol 269 (6) ◽  
pp. L791-L799 ◽  
Author(s):  
B. R. Stripp ◽  
K. Maxson ◽  
R. Mera ◽  
G. Singh

The goal of this study was to determine the temporal and spatial sequence of events that accompany lung injury and repair after parenteral administration of the Clara cell-specific cytotoxicant, naphthalene. Changes in airway epithelial cells were evaluated by measuring alterations in the expression of markers for differentiated Clara cells (CYPIIF and Clara cell 10-kDa secretory protein, CC10), distal airway/alveolar type II cells (surfactant protein B; SP-B) and for cycling/proliferating cells (cyclin dependent kinase 1;CDK1). Naphthalene-induced Clara cell cytotoxicity resulted in the exfoliation of epithelial cells containing CC10 protein. This was accompanied by a dramatic reduction in the abundance of mRNA for CC10 and CYPIIF. Large numbers of CDK1 mRNA-positive cells were identified in and around bronchioles and terminal bronchioles 48 h after treatment. This cellular proliferation resulted in the population of airways by immature epithelial cells lacking normal levels of CC10 mRNA but overexpressing SP-B mRNA. Seventy-two hours after naphthalene treatment a reduction in CDK1 mRNA-positive cells was noted within bronchioles and terminal bronchioles at all locations, with the exception of airway bifurcations. At airway bifurcations CDK1 mRNA appeared to be more abundant at the 72-h time point than at 48 h. Comparison of these sections with serial sections probed for CC10 mRNA demonstrated a correlation between the expression of CDK1 and CC10 mRNA at bifurcations. Temporal increases in the abundance of CC10 mRNA observed at later time points were largely accounted for by the processive maturation of newly repopulated cells neighboring bifurcations in bronchioles. These studies identify spatially distinct populations of cells that act in concert to repopulate naphthalene-injured airways and support the notion that branch point cells play an important role in the maturation of newly regenerated airway epithelial cells after acute injury.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadzeya Marozkina ◽  
Laura Smith ◽  
Yi Zhao ◽  
Joe Zein ◽  
James F. Chmiel ◽  
...  

AbstractEndothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air–liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbβ expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, β, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbβ gene expression were associated with lower FEV1 in asthma. Both Hbβ knockdown and overexpression affected cell morphology. Hbβ and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbβ gene expression were associated with airflow obstruction. Hbβ and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.


2014 ◽  
Vol 307 (2) ◽  
pp. L186-L196 ◽  
Author(s):  
April Kalinowski ◽  
Iris Ueki ◽  
Gundula Min-Oo ◽  
Eric Ballon-Landa ◽  
David Knoff ◽  
...  

Airway epithelial cells are the primary cell type involved in respiratory viral infection. Upon infection, airway epithelium plays a critical role in host defense against viral infection by contributing to innate and adaptive immune responses. Influenza A virus, rhinovirus, and respiratory syncytial virus (RSV) represent a broad range of human viral pathogens that cause viral pneumonia and induce exacerbations of asthma and chronic obstructive pulmonary disease. These respiratory viruses induce airway epithelial production of IL-8, which involves epidermal growth factor receptor (EGFR) activation. EGFR activation involves an integrated signaling pathway that includes NADPH oxidase activation of metalloproteinase, and EGFR proligand release that activates EGFR. Because respiratory viruses have been shown to activate EGFR via this signaling pathway in airway epithelium, we investigated the effect of virus-induced EGFR activation on airway epithelial antiviral responses. CXCL10, a chemokine produced by airway epithelial cells in response to respiratory viral infection, contributes to the recruitment of lymphocytes to target and kill virus-infected cells. While respiratory viruses activate EGFR, the interaction between CXCL10 and EGFR signaling pathways is unclear, and the potential for EGFR signaling to suppress CXCL10 has not been explored. Here, we report that respiratory virus-induced EGFR activation suppresses CXCL10 production. We found that influenza virus-, rhinovirus-, and RSV-induced EGFR activation suppressed IFN regulatory factor (IRF) 1-dependent CXCL10 production. In addition, inhibition of EGFR during viral infection augmented IRF1 and CXCL10. These findings describe a novel mechanism that viruses use to suppress endogenous antiviral defenses, and provide potential targets for future therapies.


2004 ◽  
Vol 286 (4) ◽  
pp. L650-L657 ◽  
Author(s):  
Yingjian You ◽  
Tao Huang ◽  
Edward J. Richer ◽  
Jens-Erik Harboe Schmidt ◽  
Joseph Zabner ◽  
...  

Factors required for commitment of an undifferentiated airway epithelial cell to a ciliated cell are unknown. Cell ultrastructure analysis indicates ciliated cell commitment activates a multistage program involving synthesis of cilia precursor proteins and assembly of macromolecular complexes. Foxj1 is an f-box transcription factor expressed in ciliated cells and shown to be required for cilia formation by gene deletion in a mouse model. To identify a specific role for foxj1 in directing the ciliated cell phenotype, we evaluated the capacity of foxj1 to induce ciliogenesis and direct cilia assembly. In a primary culture model of wild-type mouse airway epithelial cells, foxj1 expression preceded the appearance of cilia and in cultured foxj1 null cells cilia did not develop. Delivery of foxj1 to polarized epithelial cell lines and primary cultured alveolar epithelial cells failed to promote ciliogenesis. Similarly, delivery of foxj1 to wild-type airway epithelial cells did not enhance the total number of ciliated cells. In contrast, delivery of foxj1 to null cells resulted in the appearance of cilia. Analysis revealed that, in the absence of foxj1, null cells contained cilia precursor basal bodies, indicating prior commitment to ciliogenesis. However, the basal bodies were disorganized within the apical compartment and failed to dock with the apical membrane. Reconstitution of foxj1 in null cells restored normal basal body organization, resulting in axoneme growth. Thus foxj1 functions in late-stage ciliogenesis to regulate programs promoting basal body docking and axoneme formation in cells previously committed to the ciliated cell phenotype.


Sign in / Sign up

Export Citation Format

Share Document