Ground motion prediction equations for significant duration using the KiK-net database

2020 ◽  
pp. 875529302097097
Author(s):  
Mahdi Bahrampouri ◽  
Adrian Rodriguez-Marek ◽  
Russell A Green

Significant duration of strong shaking quantifies the length of time during which strong earthquake-induced shaking occurs at a given site. Significant duration has multiple applications in Geotechnical and Structural Engineering. However, while multiple ground motion prediction (GMPE) equations for duration exist for shallow crustal tectonic environments, at the time of this publication, there are few published models for predicting significant duration of subduction earthquakes. To address this need and to identify the difference between significant duration of motions resulting from earthquakes in different tectonic regimes, we develop predictive equations for significant duration applicable to interface and intraslab subduction earthquakes and shallow crustal earthquakes in active tectonic regimes using the KiK-net ground motion database. The GMPEs are applicable to earthquakes with M4 to 9. In addition, the influence of earthquake magnitude on duration due to path effects is captured in the proposed relationships. Based on the relationships proposed in this study, we note that the duration of ground motions from subduction earthquakes is longer than those of shallow crustal earthquakes that have similar magnitudes and distances. The predictions of duration for shallow crustal earthquakes in active tectonic regimes developed in this study are consistent with those from previous studies.

2010 ◽  
Vol 26 (4) ◽  
pp. 907-926 ◽  
Author(s):  
Brian Chiou ◽  
Robert Youngs ◽  
Norman Abrahamson ◽  
Kofi Addo

This paper presents the development of a ground-motion prediction model for small-to-moderate shallow crustal earthquakes (3M5.5, up to 200 km distance) using data from the California ShakeMap systems. Our goal is to provide an empirical model that can be confidently used in the investigation of ground-motion difference between California and other active tectonic regions (such as the Pacific Northwest and British Columbia, Canada) where the bulk of ground-motion data from shallow crustal earthquakes is in the small-to-moderate magnitude range. This attenuation model is developed as a small-magnitude extension of the Chiou and Youngs NGA model (CY2008). We observe, and incorporate into this model, a regional difference in median amplitude between central and southern California earthquakes. The strength of the regional difference diminishes with increasing spectral period. More importantly, it is magnitude dependent and becomes insignificant for M6 earthquakes, as indicated by the large-magnitude California data used in CY2008. Together, these findings have important implications on the practice of utilizing the regional differences observed in small-to-moderate earthquakes to infer the regional differences expected in large earthquakes, including the NGA model applicability in active tectonic regions outside California.


2014 ◽  
Vol 30 (3) ◽  
pp. 989-1005 ◽  
Author(s):  
Timothy D. Ancheta ◽  
Robert B. Darragh ◽  
Jonathan P. Stewart ◽  
Emel Seyhan ◽  
Walter J. Silva ◽  
...  

The NGA-West2 project database expands on its predecessor to include worldwide ground motion data recorded from shallow crustal earthquakes in active tectonic regimes post-2000 and a set of small-to-moderate-magnitude earthquakes in California between 1998 and 2011. The database includes 21,336 (mostly) three-component records from 599 events. The parameter space covered by the database is M 3.0 to M 7.9, closest distance of 0.05 to 1,533 km, and site time-averaged shear-wave velocity in the top 30 m of V S30 = 94 m/s to 2,100 m/s (although data becomes sparse for distances >400 km and V S30 > 1,200 m/s or <150 m/s). The database includes uniformly processed time series and response spectral ordinates for 111 periods ranging from 0.01 s to 20 s at 11 damping ratios. Ground motions and metadata for source, path, and site conditions were subject to quality checks by ground motion prediction equation developers and topical working groups.


2021 ◽  
pp. 875529302110275
Author(s):  
Carlos A Arteta ◽  
Cesar A Pajaro ◽  
Vicente Mercado ◽  
Julián Montejo ◽  
Mónica Arcila ◽  
...  

Subduction ground motions in northern South America are about a factor of 2 smaller than the ground motions for similar events in other regions. Nevertheless, historical and recent large-interface and intermediate-depth slab earthquakes of moment magnitudes Mw = 7.8 (Ecuador, 2016) and 7.2 (Colombia, 2012) evidenced the vast potential damage that vulnerable populations close to earthquake epicenters could experience. This article proposes a new empirical ground-motion prediction model for subduction events in northern South America, a regionalization of the global AG2020 ground-motion prediction equations. An updated ground-motion database curated by the Colombian Geological Survey is employed. It comprises recordings from earthquakes associated with the subduction of the Nazca plate gathered by the National Strong Motion Network in Colombia and by the Institute of Geophysics at Escuela Politécnica Nacional in Ecuador. The regional terms of our model are estimated with 539 records from 60 subduction events in Colombia and Ecuador with epicenters in the range of −0.6° to 7.6°N and 75.5° to 79.6°W, with Mw≥4.5, hypocentral depth range of 4 ≤  Zhypo ≤ 210 km, for distances up to 350 km. The model includes forearc and backarc terms to account for larger attenuation at backarc sites for slab events and site categorization based on natural period. The proposed model corrects the median AG2020 global model to better account for the larger attenuation of local ground motions and includes a partially non-ergodic variance model.


2021 ◽  
pp. 875529302110039
Author(s):  
Filippos Filippitzis ◽  
Monica D Kohler ◽  
Thomas H Heaton ◽  
Robert W Graves ◽  
Robert W Clayton ◽  
...  

We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of periods of engineering significance (1, 3, 6, and 8 s). Significant ground-motion amplification is present and reproducible between the two events. For the longer periods, coherent spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter periods, the motions are less spatially coherent. However, coherence is still observable at smaller length scales due to the high spatial density of the measurements. Examining possible correlations of the computed response spectral accelerations with basement depth and Vs30, we find the correlations to be stronger for the longer periods. In the second part of the study, we test the performance of two state-of-the-art methods for estimating ground motions for the largest event of the Ridgecrest earthquake sequence, namely three-dimensional (3D) finite-difference simulations and ground motion prediction equations. For the simulations, we are interested in the performance of the two Southern California Earthquake Center 3D community velocity models (CVM-S and CVM-H). For the ground motion prediction equations, we consider four of the 2014 Next Generation Attenuation-West2 Project equations. For some cases, the methods match the observations reasonably well; however, neither approach is able to reproduce the specific locations of the maximum response spectral accelerations or match the details of the observed amplification patterns.


2008 ◽  
Vol 24 (1) ◽  
pp. 279-298 ◽  
Author(s):  
Paul Spudich ◽  
Brian S. J. Chiou

We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called “directivity”) around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et. al. (1997), and use of our factors reduces record-to-record sigma by about 2–20% at 5 sec or greater period.


2016 ◽  
Vol 32 (4) ◽  
pp. 2057-2081 ◽  
Author(s):  
Kioumars Afshari ◽  
Jonathan P. Stewart

We develop prediction equations for the median and standard deviation of the significant duration of earthquake ground motions from shallow crustal earthquakes in active tectonic regions. We consider significant duration parameters for 5–75%, 5–95%, and 20–80% of the normalized Arias intensity. The equations were derived from a global database with M 3.0–7.9 events. We find significant noise effects on duration parameters that compel us to exclude some records that had been used previously to develop models for amplitude parameters. Our equations include an M-dependent source duration term that also depends on focal mechanism. At small M, the data suggest approximately M-independent source durations that are close to 1 sec. The increase of source durations with M is slower over the range ∼5 to 7.2–7.4 than for larger magnitudes. We adopt an additive path term with breaks in distance scaling at 10 km and 50 km. We include site terms that increase duration for decreasing V S30 and increasing basin depth. Our aleatory variability model captures decreasing between- and within-event standard deviation terms with increasing M.


Sign in / Sign up

Export Citation Format

Share Document