Two-phase microstructural evolution at high temperatures for γ′-richen single crystal superalloys

2015 ◽  
Vol 19 (sup4) ◽  
pp. S214-S219 ◽  
Author(s):  
Y. Ru ◽  
C. Ai ◽  
S. S. Li ◽  
S. K. Gong ◽  
Y. L. Pei
2010 ◽  
Vol 46 (8) ◽  
pp. 897-906 ◽  
Author(s):  
Jingyang CHEN ◽  
Bin ZHAO ◽  
Qiang FENG ◽  
Lamei CAO ◽  
Zuqing SUN

2003 ◽  
Vol 57 (29) ◽  
pp. 4540-4546 ◽  
Author(s):  
L.R. Liu ◽  
T. Jin ◽  
N.R. Zhao ◽  
Z.H. Wang ◽  
X.F. Sun ◽  
...  

2011 ◽  
Vol 278 ◽  
pp. 247-252
Author(s):  
Inmaculada Lopez-Galilea ◽  
Stephan Huth ◽  
Suzana Gomes Fries ◽  
Ingo Steinbach ◽  
Werner Theisen

The phase field method has been applied to simulate the microstructural evolution of a commercial single crystal Ni-based superalloy during both, HIP and annealing treatments. The effects of applying high isostatic pressure on the microstructural evolution, which mainly retards the diffusion of the alloying elements causing the loss of the orientational coherency between the phases is demonstrated by the simulation and experimental results


2009 ◽  
Vol 1217 ◽  
Author(s):  
Lincoln Miara ◽  
Louis Piper ◽  
Jacob Nathan Davis ◽  
Laxmikant Saraf ◽  
Tiffany Kaspar ◽  
...  

AbstractA system to grow heteroepitaxial thin-films of solid oxide fuel cell (SOFC) cathodes on single crystal substrates was developed. The cathode composition investigated was 20% strontium-doped lanthanum manganite (LSM) grown by pulsed laser deposition (PLD) on single crystal (111) yttria-stabilized zirconia (YSZ) substrates. By combining electrochemical impedance spectroscopy (EIS) with x-ray photoemission spectroscopy (XPS) and x-ray absorption spectroscopy XAS measurements, we conclude that electrically driven cation migration away from the two-phase gas-cathode interface results in improved electrochemical performance. Our results provide support to the premise that the removal of surface passivating phases containing Sr2+ and Mn2+, which readily form at elevated temperatures even in O2 atmospheric pressures, is responsible for the improved cathodic performance upon application of a bias.


Sign in / Sign up

Export Citation Format

Share Document