Vision based seam tracking system for underwater flux cored arc welding

2006 ◽  
Vol 11 (3) ◽  
pp. 271-277 ◽  
Author(s):  
Y. H. Shi ◽  
G. R. Wang
2018 ◽  
Vol 21 (6) ◽  
pp. 1407-1412
Author(s):  
Jian-Hui Du ◽  
Jian-Xin Deng ◽  
Ke-Jian Huang ◽  
Jie-Sheng Huang ◽  
Xie Lei

Mechatronics ◽  
1996 ◽  
Vol 6 (2) ◽  
pp. 141-163 ◽  
Author(s):  
Jae Seon Kim ◽  
Young Tak Son ◽  
Hyung Suck Cho ◽  
Kwang Il Koh

1998 ◽  
Vol 120 (3) ◽  
pp. 600-608 ◽  
Author(s):  
S. B. Zhang ◽  
Y. M. Zhang ◽  
R. Kovacevic

A novel seam tracking technology based on high frequency ultrasound is developed in order to achieve high accuracy in weld seam identification. The transmission efficiency of the ultrasound is critical for obtaining a sufficient echo amplitude. Since the transmission efficiency is determined by the difference in impedance between the piezoelectric ceramic and air, match layers are designed to optimize the transmission efficiency by matching impedance. Since the air impedance depends on the density and velocity of the ultrasound, which both depend on the temperature, the optimization has been done for a wide bandwidth. Also, the receiving circuit is designed so that its resonance frequency matches the frequency of the ultrasound. As a result, the sensitivity of the noncontact ultrasonic sensor is improved 80-fold. By properly designing the focal length of the transducer, a high resolution ultrasound beam, 0.5 mm in diameter, is achieved. Based on the proposed sensing technology, a noncontact seam tracking system has been developed. Applications of the developed system in gas tungsten arc welding (GTAW) and CO2 gas metal arc welding (GMAW) processes show that a tracking accuracy of 0.5 mm is guaranteed despite the arc light, spatter, high temperature, joint configuration, small gap, etc.


Author(s):  
B-H You ◽  
J-W Kim

Many sensors, such as the vision sensor and the laser displacement sensor, have been developed to automate the arc welding process. However, these sensors have some problems due to the effects of arc light, fumes and spatter. An electromagnetic sensor, which utilizes the generation of an eddy current, was developed for detecting the weld line of a butt joint in which the root gap size was zero. An automatic seam tracking system designed for sheet metal arc welding was constructed with a sensor. Through experiments, it was revealed that the system had an excellent seam tracking accuracy of the order of ±0.2mm.


2005 ◽  
Vol 21 (02) ◽  
pp. 81-91
Author(s):  
J. Dierksheide ◽  
D. Harwig ◽  
N. Evans ◽  
L. Kvidahl

New ship designs are calling for complex, lightweight panels made of thinner steel (as thin as 3 mm) for weight and structure optimization. For stiffener welding on ship panels, thin steel demands small, precision fillet welds in order to reduce panel distortion and improve downstream processes. The existing panel welding systems in most shipyards use flux-cored arc welding with mechanical seam tracking and cannot cope with the complexity and precision required. Tandem gas metal arc welding (T-GMAW) has shown an increase in deposition rate of up to three times that of single-electrode GMAW while offering process robustness. However, when T-GMAW was combined with through-the-arc (TTA) seam tracking by weaving, the travel speed was limited to 1 m/min (40 in./min) and the minimum fillet weld size was 5 mm. Rotating electrode (RE) GMAW utilizes TTA seam tracking by rotating the contact tip and electrode around a small diameter at 10 to 100 Hz. This method results in capabilities to seam track while making welds as small as 2 mm at travel speeds as high as 2.5 m/min (100 in./min). RE-GMAW is also a robust process with enhanced bead shape characteristics ideal for horizontal fillet welds. However, because RE-GMAW is a single-electrode process, it cannot match the deposition rates of T-GMAW. This project developed rotating lead tandem (RLT) GMAW, which is a new process that offers deposition rates comparable to T-GMAW with the seam-tracking capability of RE-GMAW. An objective was to develop the preferred torch setup and electrode conditions that provide a complete range of fillet weld sizes for agile processing of ship structures. Procedures were developed for 3-, 4-, 6-, and 8-mm fillet welds with RLT-GMAW using the ARCWISE (EWI, Columbus, OH) procedure development method on a seam-tracking T-joint test. Process robustness was assessed by evaluating fusion quality, leg size, convexity, process stability, and spatter susceptibility. A preferred torch setup was determined that met the project objective. RLT-GMAW was shown to offer deposition rates that were near or equal to standard tandem GMAW, especially on smaller 3and 4-mm fillets. While offering high deposition rates, it also demonstrated high-resolution seam tracking at travel speeds up of 2.3 m/min on 3-mm fillets.


Sign in / Sign up

Export Citation Format

Share Document