The multiaxial and uniaxial creep ductility of Type 304 steel as a function of stress and strain rate

2004 ◽  
Vol 21 (1) ◽  
pp. 47-54 ◽  
Author(s):  
M. W. Spindler
2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


1989 ◽  
Vol 111 (2) ◽  
pp. 144-148 ◽  
Author(s):  
B. D. Harper

This study explores several possibilities for a correspondence in the behavior of ice at failure during uniaxial creep (constant stress) and strength (constant strain rate) experiments. The usual notion of failure in ice is employed (i.e., the occurrence of a minimum strain rate during a creep test and a peak or maximum stress during a strength test), and the behavior at failure is discussed in terms of a recently proposed nonlinear viscoelastic constitutive model for ice. It is demonstrated that no correspondence between creep and strength data can be expected in general; however, several approximate interrelationships do occur for the experimentally motivated special case of a constant (independent of stress and strain rate) failure strain.


PAMM ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 433-434
Author(s):  
Rumena Tsotsova ◽  
Thomas Böhlke

2013 ◽  
Vol 203-204 ◽  
pp. 406-410 ◽  
Author(s):  
Barbara Grzegorczyk ◽  
Wojciech Ozgowicz ◽  
Elżbieta Kalinowska-Ozgowicz

Plastic deformation of solid crystals is a complex process, mostly heterogeneous, due to the simultaneous effect of several deformation mechanisms. A dominating deformation mechanism depends on the properties of the material and external coefficients, viz. temperature, stress and strain rate. The applied Bridgman method permitted to obtain single crystal of the CuZn30 alloy adequate for plastic deformation investigations. Single crystal are characterized by selected crystallographic orientations from various areas of the basic triangle. In order to determine the influence of the crystallographic orientation on the Portevin-Le Chatelier effect selected single crystals were compressed at a temperature of 300°C at a strain rate of 10-3 s-1. Experiments confirmed the effect of the crystallographic orientation axis of CuZn30 single crystals on the observed differences in the intensity of stress oscillation on stress-strain curves.


Sign in / Sign up

Export Citation Format

Share Document