CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site

2008 ◽  
Vol 72 (1) ◽  
pp. 1-5 ◽  
Author(s):  
H. A. Alfredsson ◽  
B. S. Hardarson ◽  
H. Franzson ◽  
S. R. Gislason

AbstractStorage of CO2 as solid Ca, Mg, and Fe carbonates in basaltic rocks may provide a long-lasting solution for reduction of industrial CO2 emissions. Here, we report on the underground stratigraphy of the chemical composition and crystallinity of rocks and their alteration state at a targeted field site for injection of CO2-charged waters, the Hellisheidi area in SW Iceland.

2010 ◽  
Vol 84 (1) ◽  
pp. 25-38 ◽  
Author(s):  
David G. Morse ◽  
Maria Mastalerz ◽  
Agnieszka Drobniak ◽  
John A. Rupp ◽  
Satya Harpalani

2012 ◽  
Vol 52 (1) ◽  
pp. 427
Author(s):  
Julian Strand ◽  
Antoine Vaslin ◽  
Laurent Langhi

As part of a Geological Survey of Western Australia organised review of the Canning Basin involving UWA and CSIRO, the fault-seal potential for the northwest Canning Basin has been analysed. This study has two foci: firstly identifying potential for fault-bound hydrocarbon reservoirs in the Early Permian (Poole Sandstone and Upper Grant Group). Secondly, James Price Point, 55 km north of Broome, is the chosen location for an LNG facility to service the northern North West Shelf gas fields. As such, the study aims to highlight potential CO2 sequestration reservoir sequences occurring inside 200 km of James Price Point, the economically feasible distance for CO2 delivery to an injection site. Historically, hydrocarbon exploration drilling in the Fitzroy Trough targeted anticlinal structures, which proved unsuccessful due to localised, but significant, erosion of the Permian sequence including the Noonkanbah Formation top-seal on anticlinal crests. Given there is potential for untested, fault-bound traps to exist, which might provide an alternative to the anticlinal traps, it will be useful to identify the distribution of shale-rich, top-seal and fault-seal prone sequences, and where these occur at suitable reservoir depths. The study shows the Early Permian sequences on the flanking terraces of the Fitzroy Trough commonly have suitable top-seal and fault-seal prone sediments. In wells analysed in the Fitzroy Trough itself, the Early Permian sequence is poorly represented, but Permo-Carboniferous sediments observed indicate some sealing potential might exist there. Moving south onto the Broome Platform and into the Wiluna Sub-basin, the Early Permian sequences still display some sealing potential, but Ordovician units might provide more suitable targets for sequestration in these areas.


2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Sehah Sehah ◽  
Sukmaji Anom Raharjo ◽  
Urip Nurwijayanto Prabowo

Two dimensional modeling to basaltic rocks intrusion in Pekuncen and Karanglewas Villages Jatilawang District, Banyumas Regency, Central Java based on the local magnetic anomalies data has been carried out in March – June 2020. The amount of magnetic data obtained from the acquisition in the field was 239 data stretching in position of 109.107222° – 109.134944°E and 7.561361° – 7.577306°S, with the local magnetic anomalies values ranging of -2,961.11 – 1,516.31 nT. To model anomalous sources in the subsurface in two dimensions, then the local magnetic anomalies data is transformed into pseudogravity anomalies data, so that anomalous value can be obtained as -27.815 – 41.087 mGal. Based on the pseudogravity anomalous map, the basaltic rock intrusion is interpreted to be located in the eastern part of the research area, so modeling of anomalous sources is conducted in this area. The results of 2D-modeling to local magnetic anomalies data indicate the presence of anomalous object interpreted as basaltic rock intrusion with magnetic susceptibility contrast value of 0.0223 cgs, located at depth of 52.61 – 505.97 m and a lateral length of 1777.94 m. This rock intrudes sediment rock from the Halang Formation and is connected to other basaltic rock near the surface with magnetic susceptibility contrast value of 0.0165 cgs, located at depth of 1.94 – 80.90 m and lateral length of 751.83 m. The results of lithological interpretation are in accordance with the geological information of the research area.


1973 ◽  
Vol 39 (302) ◽  
pp. 133-144 ◽  
Author(s):  
Suzanne Y. Wass

SummaryTertiary alkali basaltic rocks from the Southern Highlands, New South Wales, contain two types of clinopyroxene crystals, which exhibit excellent morphological development of hour-glass zoning. These are small, quench clinopyroxene crystals and large, abundant, euhedral phenocrysts. Electron microprobe analyses show that the different zone sectors derive from compositional differences, with variation in TiO2 and Al2O3 contents inversely with SiO2 content being most significant. Increased depth of colour of titanaugites depends on increased coupled substitution of Al for Si in tetrahedral sites and of Ti3− in an M1 site, while pleochroism is enhanced by increasing Fe content. It is suggested that the formation of hour-glass zoning is determined by an environment of crystallization where initial crystal growth is rapid relative to ionic diffusion in the melt, resulting in different chemistry for different growth directions within the crystal. This implies that, under certain conditions, kinetic factors, as well as the chemical composition of the host magma, may be significant in determining the chemical composition of phases precipitated, particularly where more than one crystallographic direction of growth is possible.


2009 ◽  
Vol 24 (3) ◽  
pp. 463-474 ◽  
Author(s):  
Therese K. Flaathen ◽  
Sigurður R. Gislason ◽  
Eric H. Oelkers ◽  
Árný E. Sveinbjörnsdóttir

Author(s):  
Srijib Chakrabarti ◽  
Jayantha Kodikara

Research was undertaken to increase knowledge of the properties of local stabilized pavement materials to facilitate their wider use in road construction and rehabilitation. Laboratory tests involved testing for the unconfined compressive strength (UCS), shrinkage, and capillary behavior of crushed basaltic rocks stabilized with two conventional cementitious binders—general purpose cement and lime—and two cementitious binders comprising industrial waste products—blended cement and alkali-activated slag. The alkali-activated slag and blended cement significantly increased UCS of untreated material and performed as well as or better than such traditional binders as general purpose cement. Overall, lime performed poorly as a stabilizer of crushed basaltic rocks, primarily because the fine content containing clay minerals was not significant in the crushed basaltic rock composition. UCS of stabilized materials increased significantly as binder content increased; UCS could be described as a function of binder quantity. Ultimate shrinkage increased with binder content for general purpose cement and alkali-activated slag, but for blended cement, behavior was different. The rate of drying shrinkage was relatively high at the early stage of shrinkage. Generally, alkali-activated slag produced less shrinkage compared with general purpose and blended cements. Capillary rise and water absorption were also measured. Test results indicated that the rate of capillary rise and amount of water absorbed by the material matrix decreased with the increase of binder content. The research indicated that the use of binders with industrial by-products could be a viable option in stabilization of crushed basaltic rock materials.


2017 ◽  
Vol 89 (5) ◽  
pp. 581-596 ◽  
Author(s):  
Alexander P. Gysi

Abstract Numerical simulations were carried out for determining the chemical reactions relevant for the sequestration of CO2 in basaltic rock formations. The mineralogy of natural geological systems consists of silicate minerals such as the phyllosilicates and zeolites that form complex solid solutions. Using the GEMS code package based on Gibbs energy minimization, combined with the new MINES database, we can now simulate the solubility of these multicomponent and multisite mineral solid solutions in basaltic rocks. This study explores the varying effects of CO2 partial pressures, basaltic glass dissolution kinetics and reaction time on the complex chemistry of the overall CO2-water-basalt reaction path. The simulations indicate four reaction progress stages with the competing reactions between smectites (di- and trioctahedral) and Ca-Fe-Mg-carbonates controlling the amount of CO2 mineralized. A better understanding of these key mineral-fluid reactions and improvement of their thermodynamic models is critical for making more acurate predictive calculations. This comprises the basis for extending the simulations to reactive transport models, and for the assessment of the feasibility of long-term CO2 storage in basaltic rock formations.


Sign in / Sign up

Export Citation Format

Share Document