scholarly journals Activation-independent platelet adhesion and aggregation under elevated shear stress

Blood ◽  
2006 ◽  
Vol 108 (6) ◽  
pp. 1903-1910 ◽  
Author(s):  
Zaverio M. Ruggeri ◽  
Jennifer N. Orje ◽  
Rolf Habermann ◽  
Augusto B. Federici ◽  
Armin J. Reininger

AbstractPlatelet aggregation, which contributes to bleeding arrest and also to thrombovascular disorders, is thought to initiate after signaling-induced activation. We found that this paradigm does not apply under blood flow conditions comparable to those existing in stenotic coronary arteries. Platelets interacting with immobilized von Willebrand factor (VWF) aggregate independently of activation when soluble VWF is present and the shear rate exceeds 10 000 s–1 (shear stress = 400 dyn/cm2). Above this threshold, active A1 domains become exposed in soluble VWF multimers and can bind to glycoprotein Ibα, promoting additional platelet recruitment. Aggregates thus formed are unstable until the shear rate approaches 20 000 s–1 (shear stress = 800 dyn/cm.2). Above this threshold, adherent platelets at the interface of surface-immobilized and membrane-bound VWF are stretched into elongated structures and become the core of aggregates that can persist on the surface for minutes. When isolated dimeric A1 domain is present instead of native VWF multimers, activation-independent platelet aggregation occurs without requiring shear stress above a threshold level, but aggregates never become firmly attached to the surface and progressively disaggregate as shear rate exceeds 6000 s–1. Platelet and VWF modulation by hydrodynamic force is a mechanism for activation-independent aggregation that may support thrombotic arterial occlusion.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 628-628
Author(s):  
Grazia Loredana Mendolicchio ◽  
Reha Celikel ◽  
Kottayil I. Varughese ◽  
Brian Savage ◽  
Zaverio M. Ruggeri

Abstract Evaluation of the crystal structures of the amino terminal domain of platelet glycoprotein (GP) Ibα bound to the von Willebrand factor A1 domain (VWFA1) or to α-thrombin indicate the absence of significant steric hindrance in a putative triple complex of the two ligands interacting with the same receptor molecule. Superposition of the models reveals that intermolecular contacts may be established between VWFA1 and α-thrombin concurrently bound to GP Ibα, and suggests that these additional interactions could stabilize the intrinsically low affinity binding of the VWF A1 domain. To verify the predictions of the model, we used gel electrophoresis under native conditions and purified components in solution to demonstrate directly the formation of a triple complex. We then sought to evaluate whether α-thrombin could influence the functional effects of the VWF-GP Ibα interaction. For this purpose, we established a model of platelet agglutination/aggregation dependent on the interaction between recombinant dimeric VWFA1 domain, purified from the culture medium of stably transfected D. melanogaster cell lines, and GP Ibα. In this assay, platelet rich plasma prepared from individual donor blood collected with the thrombin inhibitor D-phenyl alanyl-L-prolyl-L-arginine chloromethyl ketone dihydrochloride (PPACK) as an anticoagulant (80 μM) was mixed with varying concentrations of dimeric VWFA1 (0.5-10 μg/ml) and exposed to variable shear rate levels in a cone-and-plate viscometer. Platelet aggregation was observed at shear rates between 6 and 108 dyn/cm2. The response in different normal controls was reproducible but variable in extent, and individuals could be assigned to one of two categories, low responder and high responder. An agglutination response was observed after platelets were treated with 10 μM prostaglandin E1 to block activation, and the distinction between low and high responders remained true under these conditions. For simplicity, agglutinated platelets were still defined as “aggregates”. With activation blocked platelets, aggregates were stable up to a shear rate of 30 dyn/cm2, but began to dissipate at higher levels. The addition of α-thrombin with the active site irreversibly blocked by PPACK at concentrations between 5 and 10 μg/ml substantially increased the extent of the platelet response. This was demonstrated by a faster rate of platelet agglutination/aggregation, a greater stability of aggregates at higher shear rates, and an overall increase in the size of aggregates formed. To demonstrate the latter, samples were exposed to shear stress under selected conditions and immediately fixed with 1% glutaraldehyde for quantitative image analysis. Maximum aggregate size was increased several fold in the presence of α-thrombin, and the difference was particularly evident in low responder individuals in whom dimeric VWFA1 alone caused the formation of small and unstable aggregates. PPACK-blocked thrombin by itself had no effect on platelet aggregate formation at any shear rate tested. Our findings delineate a mechanism through which α-thrombin may stabilize platelet-platelet contacts by mediating a tighter association between VWF A1 domain and GP Ibα receptor. Such a function, independent of proteolytic activity, may enhance platelet deposition at sites of vascular injury.


2009 ◽  
Vol 102 (09) ◽  
pp. 529-537 ◽  
Author(s):  
Zhou Zhou ◽  
Aubrey Bernardo ◽  
Qiqing Zhu ◽  
Yongli Guan ◽  
Wensheng Sun ◽  
...  

SummaryPlatelets arrest bleeding by adhering to and aggregating on the subendothelium exposed at the site of vessel injury.This process is initiated by the interaction between the subendothelium von Willebrand factor (VWF) and the glycoprotein (GP) Ib-IX-V complex on platelets.However,the same interaction also results in thrombosis at the site of a ruptured atherosclerotic plaque. Reagents regulating the GP Ib-VWF interaction will therefore have direct impact on haemostasis and thrombosis. We have characterised an oligonucleotide G-quartet (T30923) that specifically blocks VWF binding to GP Ibα, theVWF-binding subunit of the GP Ib-IX-V complex.We evaluated the potential interactions of T30923 with GP Ibα and VWF A1 domain by computer simulated molecular dockings, which identified four T30923 docking sites in the β-sheets of the N-terminal region of GP Ibα (E14-D18, S39, D63-S64, and D83-S85). Experimentally,T30923 bound GP Ibα and dose-dependently blocked platelet aggregation induced by ristocetin and thrombin, but not by botrocetin, collagen, TRAP, and ADP. It also blocked shear-induced platelet aggregation and thrombus formation on immobilized VWF under arterial shear stress. These results demonstrate that T30923 may have therapeutic potentials to regulate the GP IbαVWF interaction.


1998 ◽  
Vol 79 (01) ◽  
pp. 211-216 ◽  
Author(s):  
Lysiane Hilbert ◽  
Claudine Mazurier ◽  
Christophe de Romeuf

SummaryType 2B of von Willebrand disease (vWD) refers to qualitative variants with increased affinity of von Willebrand factor (vWF) for platelet glycoprotein Ib (GPIb). All the mutations responsible for type 2B vWD have been located in the A1 domain of vWF. In this study, various recombinant von Willebrand factors (rvWF) reproducing four type 2B vWD missense mutations were compared to wild-type rvWF (WT-rvWF) for their spontaneous binding to platelets and their capacity to induce platelet activation and aggregation. Our data show that the multimeric pattern of each mutated rvWF is similar to that of WT-rvWF but the extent of spontaneous binding and the capacity to induce platelet activation and aggregation are more important for the R543Q and V553M mutations than for the L697V and A698V mutations. Both the binding of mutated rvWFs to platelets and platelet aggregation induced by type 2B rvWFs are inhibited by monoclonal anti-GPIb and anti-vWF antibodies, inhibitors of vWF binding to platelets in the presence of ristocetin, as well as by aurin tricarboxylic acid. On the other hand, EDTA and a monoclonal antibody directed against GPIIb/IIIa only inhibit platelet aggregation. Furthermore, the incubation of type 2B rvWFs with platelets, under stirring conditions, results in the decrease in high molecular weight vWF multimers in solution, the extent of which appears correlated with that of plasma vWF from type 2B vWD patients harboring the corresponding missense mutation. This study supports that the binding of different mutated type 2B vWFs onto platelet GPIb induces various degrees of platelet activation and aggregation and thus suggests that the phenotypic heterogeneity of type 2B vWD may be related to the nature and/or location of the causative point mutation.


1996 ◽  
Vol 75 (04) ◽  
pp. 655-660 ◽  
Author(s):  
Mario Mazzucato ◽  
Luigi De Marco ◽  
Paola Pradella ◽  
Adriana Masotti ◽  
Francesco I Pareti

SummaryPorcine von Willebrand factor (P-vWF) binds to human platelet glycoprotein (GP) lb and, upon stirring (1500 rpm/min) at 37° C, induces, in a dose-dependent manner, a transmembrane flux of Ca2+ ions and platelet aggregation with an increase in their intracellular concentration. The inhibition of P-vWF binding to GP lb, obtained with anti GP lb monoclonal antibody (LJ-Ib1), inhibits the increase of intracellular Ca2+ concentration ([Ca2+]i) and platelet aggregation. This effect is not observed with LJ-Ib10, an anti GP lb monoclonal antibody which does not inhibit the vWF binding to GP lb. An anti GP Ilb-IIIa monoclonal antibody (LJ-CP8) shown to inhibit the binding of both vWF and fibrinogen to the GP IIb-IIIa complex, had only a slight effect on the [Ca2+]i rise elicited by the addition of P-vWF. No inhibition was also observed with a different anti GP IIb-IIIa monoclonal antibody (LJ-P5), shown to block the binding of vWF and not that of fibrinogen to the GP IIb-IIIa complex. PGE1, apyrase and indomethacin show a minimal effect on [Ca2+]i rise, while EGTA completely blocks it. The GP lb occupancy by recombinant vWF fragment rvWF445-733 completely inhibits the increase of [Ca2+]i and large aggregates formation. Our results suggest that, in analogy to what is seen with human vWF under high shear stress, the binding of P-vWF to platelet GP lb, at low shear stress and through the formation of aggregates of an appropriate size, induces a transmembrane flux of Ca2+, independently from platelet cyclooxy-genase metabolism, perhaps through a receptor dependent calcium channel. The increase in [Ca2+]i may act as an intracellular message and cause the activation of the GP IIb-IIIa complex.


Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3792-3799 ◽  
Author(s):  
Hilde Depraetere ◽  
Nadine Ajzenberg ◽  
Jean-Pierre Girma ◽  
Catherine Lacombe ◽  
Dominique Meyer ◽  
...  

Shear-induced platelet aggregation (SIPA) involves von Willebrand Factor (vWF) binding to platelet glycoprotein (GP)Ib at high shear stress, followed by the activation of αIIbβ3. The purpose of this study was to determine the vWF sequences involved in SIPA by using monoclonal antibodies (MoAbs) to vWF known to interfere with its binding to GPIb and to αIIbβ3. Washed platelets were exposed to shear rates between 100 and 4,000 seconds−1 in a rotational viscometer. SIPA was quantitated by flow cytometry as the disappearance of single platelets (DSP) in the sheared sample in the presence of vWF, relative to a control in the absence of shear and vWF. At a shear rate of 4,000 seconds−1, DSP was increased from 5.9% ± 3.5% in the absence of vWF to 32.7% ± 6.3% in the presence of vWF. This increase in SIPA was not associated with an elevation of P-selectin expression. vWF-dependent SIPA was completely abolished by MoAb 6D1 to GPIb and partially inhibited by MoAb 10E5 to αIIbβ3. Three MoAbs to vWF were compared for their effect on SIPA at 4,000 seconds−1 in the presence of vWF: MoAb 328, known to block vWF binding to GPIb in the presence of ristocetin, MoAb 724 blocking vWF binding to GPIb in the presence of botrocetin, and MoAb 9, an inhibitor of vWF binding to αIIbβ3. Similar to the effect of MoAb 6D1, MoAb 328 completely inhibited the effect of vWF, whereas MoAb 9 had a partial inhibitory effect, as MoAb 10E5 did. In contrast, MoAb 724, as well as its F(ab′)2 fragments, promoted shear-dependent platelet aggregation (165% of the DSP value obtained in the absence of MoAb 724), indicating that MoAb 724 was responsible for an enhanced aggregation, which was independent of binding to the platelet Fcγ receptor. In addition, the enhancement of aggregation induced by MoAb 724 was abrogated by MoAb 6D1 or 10E5 to the level of SIPA obtained in the presence of vWF incubated with a control MoAb to vWF. Finally, the activating effect of MoAb 724 was also found under static conditions at ristocetin concentrations too low to induce platelet aggregation. Our results suggested that on binding to a botrocetin-binding site on vWF, MoAb 724 mimics the effect of botrocetin by inducing an active conformation of vWF that is more sensitive to shear stress or to low ristocetin concentration.


Blood ◽  
2000 ◽  
Vol 95 (12) ◽  
pp. 3796-3803 ◽  
Author(s):  
Nadine Ajzenberg ◽  
Anne-Sophie Ribba ◽  
Ghassem Rastegar-Lari ◽  
Dominique Meyer ◽  
Dominique Baruch

Abstract The aim was to better understand the function of von Willebrand factor (vWF) A1 domain in shear-induced platelet aggregation (SIPA), at low (200) and high shear rate (4000 seconds-1) generated by a Couette viscometer. We report on 9 fully multimerized recombinant vWFs (rvWFs) expressing type 2M or type 2B von Willebrand disease (vWD) mutations, characterized respectively by a decreased or increased binding of vWF to GPIb in the presence of ristocetin. We expressed 4 type 2M (-G561A, -E596K, -R611H, and -I662F) and 5 type 2B (rvWF-M540MM, -V551F, -V553M, -R578Q, and -L697V). SIPA was strongly impaired in all type 2M rvWFs at 200 and 4000 seconds-1. Decreased aggregation was correlated with ristocetin binding to platelets. In contrast, a distinct effect of botrocetin was observed, since type 2M rvWFs (-G561A, -E596K, and -I662F) were able to bind to platelets to the same extent as wild type rvWF (rvWF-WT). Interestingly, SIPA at 200 and 4000 seconds-1 confirmed the gain-of-function phenotype of the 5 type 2B rvWFs. Our data indicated a consistent increase of SIPA at both low and high shear rates, reaching 95% of total platelets, whereas SIPA did not exceed 40% in the presence of rvWF-WT. Aggregation was completely inhibited by monoclonal antibody 6D1 directed to GPIb, underlining the importance of vWF-GPIb interaction in type 2B rvWF. Impaired SIPA of type 2M rvWF could account for the hemorrhagic syndrome observed in type 2M vWD. Increased SIPA of type 2B rvWF could be responsible for unstable aggregates and explain the fluctuant thrombocytopenia of type 2B vWD.


ChemBioChem ◽  
2004 ◽  
Vol 5 (6) ◽  
pp. 856-864 ◽  
Author(s):  
Jacques Hauert ◽  
Jimena Fernandez-Carneado ◽  
Olivier Michielin ◽  
Stéphane Mathieu ◽  
Daniel Grell ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (1) ◽  
pp. 164-172 ◽  
Author(s):  
Mariagrazia De Luca ◽  
David A. Facey ◽  
Emmanuel J. Favaloro ◽  
Mark S. Hertzberg ◽  
James C. Whisstock ◽  
...  

Abstract Binding of the adhesive glycoprotein, von Willebrand factor (vWf), to the platelet membrane glycoprotein (GP) Ib-IX-V complex initiates platelet adhesion and aggregation at high shear stress in hemostasis and thrombosis. In this study, the GP Ib-IX-V binding site within the vWf A1 domain was analyzed using a panel of murine monoclonal antibodies raised against a 39/34-kd vWf fragment (Leu-480/Val-481–Gly-718) encompassing the A1 domain. One antibody, 6G1, strongly inhibited ristocetin-dependent vWf binding to platelets, but had no effect on botrocetin- or jaracetin-dependent binding, or asialo-vWf–dependent platelet aggregation. The 6G1 epitope was mapped to Glu-700–Asp-709, confirming the importance of this region for modulation of vWf by ristocetin. Like ristocetin, 6G1 activated the vWf A1 domain, because it enhanced binding of the 39/34-kd fragment to platelets. In contrast, 5D2 and CR1 completely inhibited asialo-vWf–induced platelet aggregation and ristocetin-induced vWf binding to GP Ib-IX-V. However, only 5D2 blocked botrocetin- and jaracetin-induced vWf binding to platelets and binding of vWf to botrocetin- and jaracetin-coated beads. Epitopes for 5D2 and CR1 were conformationally dependent, but not congruent. Other antibodies mapped to epitopes within the A1 domain (CR2 and CR15, Leu-494–Leu-512; CR2, Phe-536–Ala-554; CR3, Arg-578–Glu-596; CR11 and CR15, Ala-564–Ser-582) were not functional, identifying regions of the vWf A1 domain not directly involved in vWf-GP Ib-IX-V interaction. The combined results provide evidence that the proline-rich sequence Glu-700–Asp-709 constitutes a regulatory site for ristocetin, and that ristocetin and botrocetin induce, at least in part, separate receptor-recognition sites on vWf. (Blood. 2000;95:164-172)


1994 ◽  
Vol 266 (3) ◽  
pp. H891-H897 ◽  
Author(s):  
P. Borgdorff ◽  
W. E. Kok ◽  
M. A. Vis ◽  
G. C. van den Bos

Extracorporeal circulation may have adverse effects on vascular reactivity. To reduce such effects, we recently coated a tube connecting the carotid and the distal femoral artery of rats with albumin. When we partially occluded this perfusion line, the reduction of flow was followed by a marked increase, which seemed not to be caused by autoregulation but by release of a vasodilator at the site of occlusion. In the present study, we investigated whether this vasodilator could originate from platelets aggregating under the influence of increased shear stress at the site of occlusion. Blood distal to the site of occlusion indeed contained numerous platelet aggregates that were not present before occlusion. Continuous recording with a photometric device showed that aggregation in the tube started before flow increased and ended before flow decreased again. Blockade of serotonin S1- and S2-receptors with methiothepin prevented the flow response. Estimated shear stress (231 +/- 17 dyn/cm2) and shear rate (6,370 +/- 478 s-1) at the site of occlusion were of the magnitude known to elicit platelet aggregation. Others have recently demonstrated that shear-induced platelet aggregation is mediated by binding of von Willebrand factor to platelet glycoprotein Ib, which is inhibited by aurintricarboxylic acid. This drug (35 mg/kg iv) completely abolished both platelet aggregation and flow increase in our experiments. These results suggest that the vasodilation during partial tube occlusion is mediated by serotonin released from platelets that aggregate as a result of high shear stress.


Sign in / Sign up

Export Citation Format

Share Document