rotational viscometer
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 82)

H-INDEX

15
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ivan Shorstkii ◽  
Alexandr Gukasyan ◽  
Evgeny Koshevoi ◽  
Vyacheslav Kosachev

For the successful implementation of alternative protein sourcesforbiorefinery, optimization of the process parameters is crucial. Knowledge of the rheological propertiesis necessary for the design and development of appropriate equipment and process calculations.The objective of this research was to evaluate the effect of the following pre-treatments: temperature, pressure andeffect of initial oil content on the rheological properties of sunflower seedcake and larvae tissue. The rheological behavior of two protein sourceswas determined by using a rotational viscometer with a hydraulic system and thermostatic bath attached to the equipment. Using the mathematical apparatus and experimental data it was observed that the plastic viscosity of the sunflower seed cake corresponded to the viscosity of the vegetable oil, which confirmed the Bingham rheology assumption put forward in this work. For the larvae mass, a Hershey Buckley fluid model was proposed.A positive linear relationship was found for pressure and a negativelinear relationship was found for the oil content of the sunflower seed cake and larvae tissue on shear stress. Keywords: rheological property, sunflower seed cake, larvae, pulsed electricaldischarge, viscoplasticity flow, Bingham model, modelling


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 371
Author(s):  
Khrystyna Moskalova ◽  
Tatiana Lyashenko ◽  
Aleksej Aniskin

The rheological properties of fresh plaster mortars, with varied contents of porous fillers and polymer admixtures, have been studied. The quantities of fine limestone and expanded perlite, and dosages of methyl hydroxy ethyl cellulose and ethylene vinyl acetate were varied in the experiment. Effective viscosity (at a shear rate from 0.045 to 5.705 s−1) and the thixotropy of the mixes were determined with rotational viscometer for 18 compositions (according to the design of the experiment). Each of the 18 viscosity curves were described with the Ostwald–de-Waele equation. The Experimental–Statistical models describing the dependencies of the parameters of the rheological model and of mix thixotropy on the composition factors were built on the obtained data. ES-models have allowed the individual and synergetic effects of mix components on the rheological characteristics to be evaluated. The expanded perlite powder can increase the viscosity by two times, probably due to its pozzolanic effect increasing the content of the CSH phase during cement hydration. The thixotropy can be increased by the quantity of limestone. The computational experiments with ES-models have made it possible for the information set, without a noticeable interrelation between rheological characteristics, to be stratified into subsets, in which such interrelations differ significantly.


Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 269-277
Author(s):  
A. A. Papakhin ◽  
Z. M. Borodina

The use of debranching enzymes in starch hydrolysis is a topical direction for obtaining new types of starch products with controlled properties and a potential for the further use. The aim of the work was to study an effect of pullulanase (EC3.2.1.41) on maize amylopectin starch in the native and gelatinized state. The objects of the research were maize amylopectin starch and enzyme preparation Promozyme D6 (Novozymes, Denmark). High-performance liquid chromatography (HPLC) was used to determine the carbohydrate composition of hydrolysates. The mass fraction of reducing substances (RS) was determined by the Lane and Eynon method. A rotational viscometer was used to measure dynamic viscosity of the starch hydrolysis products. It was found that analyzed starch in the native state showed low enzymatic sensitivity to the action of pullulanase with insignificant changes in viscosity, solubility and iodine binding capacity of the samples. Pullulanase showed the highest effect on gelatinized starch during the first eight hours of incubation. After eight hours, the maximum degree of starch hydrolysis by pullulanase at a dose of 10 units/g dry matter (DM) was 4.7% on DM basis, iodine binding capacity of the hydrolysate was D600 = 0.343 (in the control experiment D600 = 0.154), and the viscosity of the hydrolysate decreased from 7887 mPa · s to 4.3 mPa · s. Hydrolysates cooled to 8 °C and held for 20 hours along with hydrolysates that were not cooled showed high susceptibility to attack by glucoamilase (97–98%) at 60 °C and 24 hours of saccharification, which suggested the absence of their resistance to the action of glucoamilase in the conditions of the experiment. The use of pullulanase in dextrinization of the analyzed starch, which was gelatinized and partly hydrolyzed by α-amylase (RS6.1%), enabled obtaining hydrolysates with the mass fraction of reducing substances in a range of 10–24% on DM basis with the process duration of 2 to 24 hours and the enzyme dose of 2–10 units, which contained mainly maltotriose, maltohexose and maltoheptose with their total amount of 45–60% on DM basis. The results indicate a need for further research of the biocatalytic action of pullulanase to develop new methods for enzymatic modification of starch.


2021 ◽  
Vol 12 (23) ◽  
pp. 49-60
Author(s):  
Noor M. Asmael ◽  
◽  
Mohammed Y. Fattah ◽  
Abdalmhiman Kadhim ◽  
◽  
...  

Warm additives had wide popularity in recent years due to saving in energy and lowering emissions dealt with asphalt mixture production. Warm Mix Asphalt (WMA) is produced by using foaming technology or reducing -viscosity additives of binder to enhance the rheological properties. In this study, organic-based additives (Asphaltan A and Asphaltan B) are used to investigate their effect to minimize the viscosity and lower the temperature of asphalt mixture production. Bitumen is mixed with three doses of each additive: 1, 2, and 3% of its weight. The binder viscosity was measured by rotational viscometer with and without the additives at three different temperatures. The study showed that the organic additives have a positive impact on the behavior of the binder in terms of viscosity reduction and made enhancements in terms of bitumen properties. This result could be useful in the reduction of production temperature and quantity of odour emissions.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7666
Author(s):  
Navid Hemmati ◽  
Jihyeon Yun ◽  
Mithil Mazumder ◽  
Moon-Sup Lee ◽  
Soon-Jae Lee

The study describes the laboratory assessment (physical and rheological properties) of the binders (PG 64-22 and PG 76-22) modified with Styrene Butadiene Rubber (SBR), and a comprehensive comparison between these two modified binder types. PG 64-22 and PG 76-22 were used as base binders. Both of the base binders were blended with SBR at four different percentages of content (0%, 4%, 6%, and 8% by the weight of the binder). The base and modified binders were artificially short-term and long-term aged using a rolling thin film oven (RTFO) and pressure aging vessel (PAV) procedures. Superpave binder tests were conducted on the SBR modified binder using rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR). In depth rutting performance was investigated using Multiple Stress Creep Recovery (MSCR). The results of this study indicated that (1) the addition of SBR into both binders increased the viscosity and polymer modified asphalt (PMA) binders observed to have more significant effect on its viscosity property; (2) the higher the SBR content, the better the rutting resistance of the binder and it is observed that the effect is prominent on the control binder; (3) MSCR test results showed that the SBR modified binders improved the binder percentage recovery and found to have a more significant effect on the PG 76-22 binder compared to PG 64-22; and (4) both the control PG 64-22 and PMA PG 76-22 binders resulted in similar trends on the cracking properties and were found to have insignificant effects due to the addition of an SBR modifier.


2021 ◽  
Vol 11 (6) ◽  
pp. 5-8
Author(s):  
Vipulata P. Galankar

The goal of this project was to design, develop, and in-vitro evaluation of an in-situ gelling system for nasal administration of Bambuterol hydrochloride. All of the batches were prepared using different concentration of pectin, given different doses of simulated nasal electrolyte solution (SNES) i.e., 0.1 ml to 2.0 ml. All batches and formulation batches with a composition of 0.8 percent low methoxyl pectin underwent an in vitro gelation testing. The pH of the formulation reduced as the pectin content increased due to the acidic nature of pectin. The drug concentration was greater than 95%, and the apparent viscosity of the sol and gel was measured using a Brookfield viscometer (Rotational Viscometer Model). When the concentration of gelling polymer was increased from 0.5 to 1.0 percent, the gel strength (SOL) increased from 0.6 to 1 sec. The gel strength (GEL) increased from 0.7 to 13 seconds as a result of gelation. In vitro drug release experiments showed that the resulting formulations could release the medication for up to 10 hours when Higuchi kinetics were applied to all of them. The gels were stable across the six-month test period, according to the accelerated stability studies. There was no drug-polymer interaction, according to DSC and XRD analyses. Based on these findings, in situ nasal gel could be a possible drug delivery strategy for bambuterol hydrochloride, allowing it to bypass first-pass metabolism and hence improve bioavailability.


Author(s):  
А.В. ГУКАСЯН ◽  
Е.П. КОШЕВОЙ ◽  
В.С. КОСАЧЁВ ◽  
И.А. ШОРСТКИЙ

Определены параметры течения пластичной жидкости при экструзионной переработке масличных культур. В качестве экспериментального материала использовали мезгу, выходящую из жаровни и поступающую в экструдер. Вязкость измеряли на ротационном вискозиметре при избыточном гидростатическом давлении 981 Па. Высота слоя материала в измеряемой ячейке составила 38 мм. Скорость сдвига в процессе измерения варьировали от 1 до 10 рад/с. Проведены эксперименты по определению зависимости вязкости от масличности материала, напряжения и скорости сдвига, а также гидравлического давления на исследуемый материал. Анализ результатов эксперимента свидетельствует о наличии структурообразования материала, поступающего в экструдер. Полученные параметры инженерной модели позволяют прогнозировать реологию вязкопластичного течения в широком диапазоне скоростей сдвига в каналах шнекового пресса. The parameters of the flow of plastic liquid during the extrusive processing of oilseed material are defined. The pulp coming from the brazier and into an extruder was used as experimental material. The viscosity was measured with rotational viscometer under excessive hydrostatic pressure of 981 PA. The height of the layer of material in the measuring cell was 38 mm. Shear rate during the measurement ranged from 1 to 10 rad/s. The experiments to determine the dependence of viscosity on oil content material, pressure, and velocity shear, and hydraulic pressure on the oilseed material were carrying out. Analysis of the results of the experiment indicates the presence of structure formation of the material coming into the extruder.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5906
Author(s):  
István Kertész ◽  
Dávid Nagy ◽  
László Baranyai ◽  
Klára Pásztor-Huszár ◽  
Kinga Varsányi ◽  
...  

Ultrasonic testing is an emerging non-destructive testing technology with high repeatability and precision. Milk is a very complex liquid and the change of its viscosity is a highly relevant property throughout conversion into other dairy products. In the following paper, we propose a novel method for the monitoring of viscosity during enzymatic milk clotting by ultrasonic spectroscopy. An ultrasonic transducer–receiver couple with a 250 kHz nominal frequency was submerged in the samples and an enveloped sweep (“chirp”) signal was applied in a through-transmission mode. Simultaneously, the change in viscosity was measured with a rotational viscometer at a constant shearing speed. The data were analyzed with an algorithm developed by the authors for spectral ultrasonic testing. Estimations yielded a high adjusted R2 (0.963–0.998) and low cross-validated estimation error (RPD: 4.38–14.22), suggesting that the method is suitable for industrial use given the right instrumentation.


Sign in / Sign up

Export Citation Format

Share Document