Bortezomib inhibits tumor adaptation to hypoxia by stimulating the FIH-mediated repression of hypoxia-inducible factor-1

Blood ◽  
2008 ◽  
Vol 111 (6) ◽  
pp. 3131-3136 ◽  
Author(s):  
Dong Hoon Shin ◽  
Yang-Sook Chun ◽  
Dong Soon Lee ◽  
L. Eric Huang ◽  
Jong-Wan Park

Abstract Bortezomib (PS-341), a proteasome inhibitor, has been examined clinically for the treatment of multiple myeloma and several solid tumors. Bortezomib directly induces tumor cell death and has also been reported to inhibit tumor adaptation to hypoxia by functionally inhibiting hypoxia-inducible factor-1α (HIF-1α). However, the mechanism underlying HIF-1 inhibition by bortezomib remains obscure. In the present study, we demonstrated that bortezomib attenuated the hypoxic induction of erythropoietin and vascular endothelial growth factor at subnanomolar concentrations in multiple myeloma and liver cancer cell lines, regardless of cytotoxic concentrations of bortezomib. Bortezomib repressed HIF-1α activity by inhibiting the recruitment of p300 coactivator. Specifically, bortezomib targeted HIF-1α C-terminal transactivation domain (CAD) but not the CAD lacking Asn803, which is a hydroxylation site by the factor inhibiting HIF-1 (FIH). Accordingly, this effect of bortezomib on CAD was augmented by FIH expression and abolished by FIH knock-down. Furthermore, bortezomib stimulated the interaction between CAD and FIH under hypoxic conditions, and FIH inhibition reversed the suppressions of erythropoietin and vascular endothelial growth factor by bortezomib. We propose that the mechanism underlying the inhibitory effects of bortezomib on tumor angiogenesis and hypoxic adaptation involves the repression of HIF-1α transcriptional activity by reinforcing the FIH-mediated inhibition of p300 recruitment.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3957-3957
Author(s):  
Shigehiko Imagawa ◽  
Ken Matsumoto ◽  
Naoshi Obara ◽  
Norio Suzuki ◽  
Toshiro Nagasawa ◽  
...  

Abstract In oxygenated cells, hypoxia inducible factor-1 (HIF-1)α subunits are rapidly degraded by a mechanism that involves ubiquitination by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex using 2-oxoglutarate as a substrate. This process is suppressed by hypoxia and iron chelation, allowing transcriptional activation. The interaction between human pVHL and a specific domain of the HIF-1α subunit is regulated through hydroxylation of proline residues 402 and 564 by HIF-1α proryl-hydroxylase (PHD). N-oxalyl glycine acts as a competitive inhibitor of HIF-PHDs and this inhibition is in competition with 2-oxoglutarate. We examined the effect of 2-oxoglutarate on the production of vascular endothelial growth factor (VEGF) and erythropoietin (Epo). The expression of VEGF and Epo protein were dose-dependently downregulated in Hep3B cells by the addition of 2-oxoglutarate. The enhancer activity of the HIF-1 binding site of Epo and the promoter activity of VEGF-luciferase were also dose-dependently downregulated by the addition of 2-oxoglutarate. Gel mobility shift assays revealed that the addition of 2-oxoglutarate dose-dependently inhibited HIF-1 binding activity, but did not affect GATA binding activity. Western blot analysis revealed that 2-oxoglutarate dose-dependently inhibited HIF-1α protein in Hep3B, Hela and SW480 cells in hypoxic conditions. However MG132 (the proteasome inhibitor) rescued the inhibition of HIF-1α protein expression by 2-oxoglutarate. Furthermore, under hypoxic conditions, 2-oxoglutarate dose-dependently inhibited tube formation in in vitro angiogenesis assays. These results indicate that 2-oxoglutarate treatment may be useful for the inhibition of tumor angiogenesis through decreasing HIF-1α protein, HIF-1 binding activity, the promoter activity of VEGF and enhancer activity of Epo, and the production of VEGF and Epo. More studies to determine if 2-oxoglutarate inhibits tumor angiogenesis in vivo mouse assay are in progress.


Sign in / Sign up

Export Citation Format

Share Document