scholarly journals Runx2 induces acute myeloid leukemia in cooperation with Cbfβ-SMMHC in mice

Blood ◽  
2009 ◽  
Vol 113 (14) ◽  
pp. 3323-3332 ◽  
Author(s):  
Ya-Huei Kuo ◽  
Sayyed K. Zaidi ◽  
Svetlana Gornostaeva ◽  
Toshihisa Komori ◽  
Gary S. Stein ◽  
...  

Abstract The core-binding factor (CBF) is a master regulator of developmental and differentiation programs, and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study, we show that sustained expression of Runx2 modulates Cbfβ-smooth muscle myosin heavy chain (SMMHC)–mediated myeloid leukemia development. Expression of Runx2 is high in the hematopoietic stem cell compartment and decreases during myeloid differentiation. Sustained Runx2 expression hinders myeloid progenitor differentiation capacity and represses expression of CBF targets Csf1R, Mpo, Cebpd, the cell cycle inhibitor Cdkn1a, and myeloid markers Cebpa and Gfi1. In addition, full-length Runx2 cooperates with Cbfβ-SMMHC in leukemia development in transplantation assays. Furthermore, we show that the nuclear matrix–targeting signal and DNA-binding runt-homology domain of Runx2 are essential for its leukemogenic activity. Conversely, Runx2 haplo-insufficiency delays the onset and reduces the incidence of acute myeloid leukemia. Together, these results indicate that Runx2 is expressed in the stem cell compartment, interferes with differentiation and represses CBF targets in the myeloid compartment, and modulates the leukemogenic function of Cbfβ-SMMHC in mouse leukemia.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 399-399 ◽  
Author(s):  
Monique Terwijn ◽  
Angèle Kelder ◽  
Arjo P Rutten ◽  
Alexander N Snel ◽  
Willemijn Scholten ◽  
...  

Abstract Abstract 399 In acute myeloid leukemia (AML), relapses originate from the outgrowth of therapy surviving leukemic blasts know as minimal residual disease (MRD). Accumulating evidence shows that leukemia initiating cells or leukemic stem cells (LSCs) are responsible for persistence and outgrowth of AML. Monitoring LSCs during and after therapy might thus offer accurate prognostic information. However, as LSCs and hematopoietic stem cells (HSCs) both reside within the immunophenotypically defined CD34+CD38- compartment, accurate discrimination between LSCs and HSCs is required. We previously showed that within the CD34+CD38- stem cell compartment, LSCs can be discriminated from HSC by aberrant expression of markers (leukemia associated phenotype, LAP), including lineage markers like CD7, CD19 and CD56 and the novel LSC marker CLL-1 (van Rhenen, Leukemia 2007, Blood 2007). In addition, we reported that flowcytometer light scatter properties add to even better detection of LSCs, allowing LSCs detection in AML cases lacking LAP (ASH abstract 1353, 2008). Using this gating strategy, we determined LSC frequency in 64 remission bone marrow samples of CD34+ AML patients. A stem cell compartment was defined as a minimum of 5 clustered CD34+CD38- events with a minimal analyzed number of 500,000 white blood cells. After first cycle of chemotherapy, high LSC frequency (>1 × 10-3) clearly predicted adverse relapse free survival (RFS, figure 1a). LSC frequency above cut-off led to a median RFS of 5 months (n=9), while patients with LSC frequency below cut-off (n=22) showed a significantly longer median RFS of >56 months (p=0.00003). In spite of the relatively low number of patients, again a high LSC frequency (>2 × 10-4) after the second cycle and after consolidation therapy predicted worse RFS: after second cycle, median RFS was 6 months (n=9) vs. >43 months for patients with LSC frequency below cut-off (p=0.004). After consolidation, these figures were 6 months (n=7) vs. >32 months (n=6, p=0.03). Although total blast MRD (leukemic blasts as % of WBC) is known to predict survival (N.Feller et al. Leukemia 2004), monitoring LSCs as compared to total blast MRD has two major advantages: the specificity is higher (van Rhenen et al. Leukemia 2007) and well-known LSC makers like CLL-1, CD96 and CD123 can in principle be used for LSC monitoring, but not for total blast MRD detection since these markers are also expressed on normal progenitor cells. On the other hand, LSCs constitute only a small fraction of all leukemic blasts and therefore monitoring total blast MRD may have the advantage of a higher sensitivity. We thus tested the hypothesis that even more accurate prognostic information could be obtained by combining LSC frequency with total blast MRD. Total blast MRD after first cycle was predictive for survival with borderline significance (p=0.08): a cut-off of 0.3% resulted in two patient groups with median RFS of 9 months vs. >56 months. Figure 1b shows the result of the combined data of LSC and MRD frequency after first cycle therapy. We used the terms LSC+ and MRD+ for cell frequencies above cut-off and LSC- and MRD- for those below cut-off. We could clearly identify that apart from LSC+/MRD+ patients, LSC+/MRD- patients too have very poor prognosis, while MRD+/LSC- patients show an adverse prognosis as compared to LSC-/MRD- patients. These results from the first study on the in vivo fate of LSCs during and after therapy, strongly support the hypothesis that in CD34+ AML the leukemia initiating capacity originates from the CD34+CD38- population and is important for tumor survival and outgrowth. These results show that LSC frequency might be superior in predicting prognosis of AML patients in CR as compared to MRD total blast frequency, while the combination of both may offer the most optimal parameter to guide future intervention therapies. This work was supported by Netherlands Cancer Foundation KWF. Disclosures: No relevant conflicts of interest to declare.


Haematologica ◽  
2019 ◽  
Vol 105 (5) ◽  
pp. 1306-1316
Author(s):  
Barbara Depreter ◽  
Karin E. Weening ◽  
Karl Vandepoele ◽  
Magnus Essand ◽  
Barbara De Moerloose ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1353-1353
Author(s):  
J Monique Terwi ◽  
Angèle Kelder ◽  
Arjo P Rutten ◽  
Sonja Zweegman ◽  
Gert J Ossenkoppele ◽  
...  

Abstract In acute myeloid leukemia (AML), a small fraction of blast cells contains the tumor initiating cells, further referred to as leukemic stem cells (LSCs). LSC resemble hematopoietic stem cells (HSCs) with respect to self renewal capacity and quiescence. Therefore, LSCs are proposed to be therapy resistant. In order to optimally target LSCs and sparing HSC and to monitor therapy, discrimination between LSC is HSC is required. We showed that within the CD34+CD38− stem cell compartment, LSCs can be discriminated from HSC by aberrant expression of markers, including lineage markers like CD7, CD19 and CD56 and the novel LSC marker CLL-1 (van Rhenen et al., Leukemia 2007 and Blood 2007). Too low aberrant marker expression, however, hampers discrimination in part of the cases. Therefore, we investigated additional parameters that would allow to distinguish LSCs from HSCs in CD34 positive AML patients. In 14 out of 48 cases studied, flow cytometry revealed a double population within the CD34+CD38− compartment, characterized by a small but clear difference in forward scatter (FSC, reflecting cell size) and sideward scatter (SSC, reflecting granularity). In 7/14 cases with high marker expression, FSChighSSChigh population coincided completely with the population with aberrant marker expression. In the other cases, marker expression was too moderate to show a complete overlap. The FSClowSSClow population within the CD34+CD38− stem cell compartment is the minor population at diagnosis (median 16%, range 0.2%–92%; n=14), had no expression of aberrant markers and, moreover, closely resembled the FSC/SSC characteristics of normal BM HSCs. In addition, in these patients, the normality of the FSClowSSClow population was also supported by the fact that the CD34 and CD45 antigen density was similar to that of normal BM HSCs. Altogether, this enabled to use FSC/SSC characteristics together with aberrant CD34 and CD45 expression to discriminate between LSC and HSC in cases with low or absent aberrant marker expression (8/48). In addition, the malignant character of the FSChighSSChigh population and the normal character of the FSClowSSClow population could be proven in three AML patients with cytogenetic aberrancies. Patient 1 had a t(8;21) translocation and presented with a CD34+CD38−- population that was CD19 positive (81% of the stem cell compartment) and had FSChighSSChigh properties. FACSsorted cells contained the translocation in 90% of the cells. The CD19 negative population (19% of the stem cell compartment) had FSClowSSClow characteristics and contained 0% t(8;21) cells. In two other AML cases with a cytogenetic aberrancy (t(8;21) and t(15;17), respectively), FSC/SSC characteristics, CD34/CD45 antigen density and aberrant marker expression (CD56 in one case and CLL-1 in the other) were partly overlapping (estimated LSC contribution to the CD34+CD38− compartment was 85% in both cases). Cell sorting on the highest FSC/SSC and marker expression nevertheless resulted in enrichment of cytogenetically aberrant cells (63% and 73%, respectively), while the corresponding FSClowSSClow cells, which missed CD56 and CLL-1 expression, were enriched for cytogenetically normal HSCs (87% and 67%, respectively). The marker and scatter parameters discussed above have generated the possibility to discriminate between LSCs and HSCs and now allows specific detection of LSC in >75 % of the patients. Discrimination between LSCs and HSCs in AML might not only facilitate to establish the therapeutic window of current therapies in terms of LSC specificity, but also allow the identification of new highly AML stem cells specific therapeutic targets. This should ultimately result in more selective therapies, which would be highly effective for AML stem cells, while leaving the normal HSC intact. This work was supported by Netherlands Cancer Foundation KWF.


Sign in / Sign up

Export Citation Format

Share Document