leukemia development
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 40)

H-INDEX

30
(FIVE YEARS 4)

Cancers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 56
Author(s):  
Marijana Miljkovic-Licina ◽  
Nicolas Arraud ◽  
Aicha Dorra Zahra ◽  
Patricia Ropraz ◽  
Thomas Matthes

Extracellular vesicles (EVs) act in cell-to-cell communication, delivering cargo from donor to recipient cells and modulating their physiological condition. EVs secreted by leukemic blasts in patients with leukemia have been shown to influence the fate of recipient cells in the bone marrow microenvironment. Methods to quantify and to characterize them phenotypically are therefore urgently needed to study their functional role in leukemia development and to evaluate their potential as targets for therapy. We have used cryo-electron microscopy to study morphology and size of leukemic EVs, and nanoparticle tracking analysis and fluorescence triggering flow cytometry to quantify EVs in platelet-free plasma from a small cohort of leukemia patients and healthy blood donors. Additional studies with a capture bead-based assay allowed us to establish phenotypic signatures of leukemic EVs from 17 AML and 3 B-ALL patients by evaluating the expression of 37 surface antigens. In addition to tetraspanins and lineage-specific markers we found several adhesion molecules (CD29, and CD146) to be highly expressed by EVs from B-ALL and several leukemic stem cell antigens (CD44, CD105, CD133, and SSEA-4) to be expressed by EVs from AML patients. Further improvements in analytical methods to study EVs are needed before potentially using them as biomarkers for leukemia prognosis and follow-up.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4329-4329
Author(s):  
Hui Mei Lee ◽  
Niloofar Zandvakili ◽  
Rhea Desai ◽  
Peter J. Browett ◽  
Purvi M Kakadia ◽  
...  

Abstract The MLL/AF9 fusion is found in approximately 30% of MLL-rearranged leukemias and has an intermediate prognosis. Genomically well-characterized murine leukemia models enable us to understand leukemogenesis. We generated a retroviral transduction murine bone marrow transplantation leukemia model (MBMTLM) using the MLL/AF9 fusion gene. Fifteen of 20 mice transplanted with syngeneic bone marrow transduced with a MLL/AF9 carrying retrovirus developed leukemia after a median latency of 149 days. Half a million leukemic bone marrow (LBM) cells from two of these primary leukemias, MA03-P and MA86-P, were transplanted into irradiated recipient mice to establish secondary leukemias, MA03-S (n=3) and MA86-S (n=4). Half a million LBM cells from these secondary leukemias were further transplanted into irradiated recipient mice to generate tertiary leukemias, MA03-T (n=3) and MA86-T (n=4). The latency of the leukemias shortened from 141 days in MA03-P to 18 and 22 days in MA03-S and MA03-T, respectively. Similarly, MA86-P had a latency of 98 days, and the latency was reduced to about 28 days in MA986-S and MA986-T. We used retroviral insertion sites (RISs) to track leukemia clones during serial transplantation. We identified 5 RISs in MA03-P. One RIS, RIS#1-03 at chromosome 7:4602500-4609499 accounted for 52.5% of the total RIS-related reads in MA03-P, while the other four RISs were each represented by fewer than 5% of the reads. Only RIS#1-03 was detected in all of the MA03 secondary and tertiary leukemias , indicating that the cells with RIS#1-03 were the dominant clone in MA03 leukemias. Two RISs were detected in MA86-P: RIS#1-86 at chromosome 19:41338500-41341999 and RIS#2-86 at chromosome 10:127106000-127109499 at 46.7% and 2.5%, respectively . RIS#1-986 was contained in the dominant clone as only this RIS was subsequently detected in the secondary and tertiary MA86 leukemias. The relatively long latency to leukemia development in our MLL/AF9 model was most likely due to the requirement of cooperating somatic mutations. We performed whole exome sequencing on DNA from LBM (n=15) and DNA from their corresponding germline (n=2). An average of 4.5 of single nucleotide variants (SNVs) and 11.4 indels affecting protein coding sequences were found in the MA03 family of leukemias (n=7) which, among others, mutated genes involved in tyrosine kinase pathways such as Epha5 and Pik3r1. We identified an average of 14.8 (SNVs) and 0.5 indels per exome in the MA86 leukemias (n=8). Transcription regulator (Brd1) and tumor suppressor genes (Stk11 and Trp53) were affected by somatic changes in the MA86 family. RNA sequencing was performed on LBM (n=15) and healthy bone marrow (HBM) (n=8). Principal component analysis (PCA) on the expression profiles showed that LBM samples clustered together. Differential gene expression analysis identified genes such as Six1, Eya1 and Bcor which had been reported in previous studies to be essential for leukemogenesis in MLL/AF9 murine model. We also observed downregulation of genes such as Gata2, Btg1, Ifitm1, which had been implicated in other types of leukemias. We next investigated the effect of the RISs and somatic mutations on gene expression. RIS#1-903 was in intron 1 of Ppp6r1. A reduction in fragments per kilobase of transcript per Million mapped reads (FPKM) of Ppp6r1 was observed in MA03 family leukemias compared to leukemias of the MA86 family which did not have RIS#1-03 and showed no difference to HBM samples (MA03: 87.71±1.5; MA86: 132.1±5.1; HBM: 77.56±1.7, p< 0.001). We then determined the expression of Tm9sf3 as it is located 600bp away from RIS#1-986. The FPKM of Tm9sf3 was significantly higher in LBM (both of MA903 and MA986 leukemias) than in HBM (LBM: 146.0±12.7; HBM: 64.66±2.8, p<0.001). In MA86 leukemias which all have RIS#1-86, the FPKM of Tm9sf was two fold higher than in MA03 leukemias without RIS#1-86 (MA86: 189.3±4.4; MA03:97.59±1.7, p < 0.001). In contrast, none of the somatic mutations had a significant effect on the expression of any of the mutated genes. In conclusion, we have established a MBMTLM driven by the MLL/AF9 fusion gene. This well-characterized model provides insights to further understand leukemia development and drug testing. Moreover, we demonstrated that RISs can have an impact on gene expression. Future work on whether Ppp6r1 and Tm9sf3 identified by our RIS analysis are drivers in MLL/AF9 leukemias is warranted. Disclosures Browett: MSD: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2281-2281
Author(s):  
Rachel Gallant ◽  
Katti Arroyo ◽  
Paige Bracci ◽  
Catherine Metayer ◽  
Adam J. de Smith ◽  
...  

Abstract Background: Recent evidence supports the role of cytomegalovirus (CMV) in the development of childhood ALL. The underlying mechanism and CMV's role in the leukemic cell phenotype is unknown, but CMV typically interacts with the host immune system allowing the virus to survive in a latent state; it may be that this immune dysregulation affects the risk of ALL. This study aims to explore the association of CMV and ALL at the time of leukemia diagnosis, using AML cases as a control and further, to determine whether CMV affects certain subgroups of ALL patients such as specific ethnicities, age groups, or cytogenetic subtypes. Methods: Pediatric diagnostic leukemia bone marrow samples obtained from the California Childhood Leukemia Study were screened for the presence of CMV DNA using a custom-designed droplet digital PCR assay. A total of 869 cases were analyzed including 125 AML cases and 744 ALL cases. Demographic and clinical features were compared between patients found to be CMV positive (cases with any detectable CMV positive droplets) and those who were CMV negative (cases with no detectable CMV positive droplets). The effect of the level of CMV viral DNA load was also assessed. For a subset of cases (n=61), Affymetrix Array gene expression data were available and differential gene expression performed to compare CMV positive cases with high viral load to CMV negative cases. Odds ratios and confidence intervals were estimated using logistic regression. Results: ALL cases were more likely to be CMV positive compared to AML (OR: 2.50; CI 1.00, 5.47, p = 0.039 for CMV highest quintile vs. CMV negative). Within ALL cases, B-cell ALL (B-ALL) was significantly associated with CMV positivity compared to T-cell ALL (T-ALL) (OR: 2.93; CI: 1.01, 8.52, p = 0.048 for CMV highest tertile vs. CMV negative). Further subtype analysis of B-ALL cases revealed CMV positivity to be significantly associated with high hyperdiploidy, one of the most common ALL subtypes, when compared to ETV6-RUNX1 (OR: 2.52; CI:1.34, 4.73, p = 0.004 for highest CMV tertile vs. CMV negative). CMV positive B-ALL cases were also more likely to harbor deletions of EBF1, a B-cell development gene, compared to CMV negative cases (OR: 6.10; CI: 1.09, 34.06, p = 0.04 for CMV 2 nd tertile vs. CMV negative; OR: 5.54; CI: 1.13, 27.18, p = 0.03 for CMV highest tertile vs. CMV negative). Differential gene expression analysis revealed 830 genes to be significantly differentially expressed between the highest quintile of CMV positive cases and CMV negative cases, and gene ontology analysis revealed upregulation of processes involved in viral infection and replication. Specifically, cytokine signaling pathways including IL-1, IL-8, and IL-7 were upregulated in CMV positive cases while Th1 and the pathway facilitating crosstalk between dendritic cells and natural killer cells were downregulated. Interestingly, B-cell receptor signaling was also upregulated in CMV positive cases. Conclusion: Our results support the hypothesis that CMV plays an enhanced role in leukemia development in specific subtypes of ALL, and not in AML development. The ability of CMV to interact with the host immune system, highlights immune dysregulation as a potential mechanism by which CMV contributes to risk of ALL. Gene expression analysis on a subset of cases revealed differentially expressed genes to be enriched in pathways involved in immune response, suggesting a potential role for active CMV infection in the leukemic phenotype. The patterns of up- and downregulation in these pathways were consistent with the host response to CMV. Additionally, acute CMV infection has been shown to promote B-cell activation and proliferation. Further, CMV seropositive individuals have been reported to have altered immune responses even with the virus in a latent state highlighting the virus's effect on B-cells. In our study we also found B-cell receptor signaling to be upregulated in CMV positive cases. This is consistent with the known effects of CMV in a typical host, but in patients with leukemia it provides an interesting potential link between CMV infection and development of pediatric ALL. These intriguing results require validation and warrant continued investigation of the role of CMV in pediatric leukemia development. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lianjun Zhang ◽  
Le Xuan Truong Nguyen ◽  
Ying-Chieh Chen ◽  
Dijiong Wu ◽  
Guerry J. Cook ◽  
...  

AbstractAcute myeloid leukemia (AML) harboring inv(16)(p13q22) expresses high levels of miR-126. Here we show that the CBFB-MYH11 (CM) fusion gene upregulates miR-126 expression through aberrant miR-126 transcription and perturbed miR-126 biogenesis via the HDAC8/RAN-XPO5-RCC1 axis. Aberrant miR-126 upregulation promotes survival of leukemia-initiating progenitors and is critical for initiating and maintaining CM-driven AML. We show that miR-126 enhances MYC activity through the SPRED1/PLK2-ERK-MYC axis. Notably, genetic deletion of miR-126 significantly reduces AML rate and extends survival in CM knock-in mice. Therapeutic depletion of miR-126 with an anti-miR-126 (miRisten) inhibits AML cell survival, reduces leukemia burden and leukemia stem cell (LSC) activity in inv(16) AML murine and xenograft models. The combination of miRisten with chemotherapy further enhances the anti-leukemia and anti-LSC activity. Overall, this study provides molecular insights for the mechanism and impact of miR-126 dysregulation in leukemogenesis and highlights the potential of miR-126 depletion as a therapeutic approach for inv(16) AML.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4000
Author(s):  
Esra’a Keewan ◽  
Ksenia Matlawska-Wasowska

Cytokines are pleiotropic signaling molecules that execute an essential role in cell-to-cell communication through binding to cell surface receptors. Receptor binding activates intracellular signaling cascades in the target cell that bring about a wide range of cellular responses, including induction of cell proliferation, migration, differentiation, and apoptosis. The Janus kinase and transducers and activators of transcription (JAK/STAT) signaling pathways are activated upon cytokines and growth factors binding with their corresponding receptors. The SOCS family of proteins has emerged as a key regulator of cytokine signaling, and SOCS insufficiency leads to constitutive activation of JAK/STAT signaling and oncogenic transformation. Dysregulation of SOCS expression is linked to various solid tumors with invasive properties. However, the roles of SOCS in hematological malignancies, such as leukemia, are less clear. In this review, we discuss the recent advances pertaining to SOCS dysregulation in leukemia development and progression. We also highlight the roles of specific SOCS in immune cells within the tumor microenvironment and their possible involvement in anti-tumor immunity. Finally, we discuss the epigenetic, genetic, and post-transcriptional modifications of SOCS genes during tumorigenesis, with an emphasis on leukemia.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1899
Author(s):  
Selcen Öztürk ◽  
Verena Kalter ◽  
Philipp M. Roessner ◽  
Murat Sunbul ◽  
Martina Seiffert

Indoleamine-2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme producing metabolites such as kynurenine (Kyn), is expressed by myeloid-derived suppressor cells (MDSCs) and associated with cancer immune escape. IDO1-expressing monocytic MDSCs were shown to accumulate in patients with chronic lymphocytic leukemia (CLL) and to suppress T cell activity and induce suppressive regulatory T cells (Tregs) in vitro. In the Eµ-TCL1 mouse model of CLL, we observed a strong upregulation of IDO1 in monocytic and granulocytic MDSCs, and a significantly increased Kyn to Trp serum ratio. To explore the potential of IDO1 as a therapeutic target for CLL, we treated mice after adoptive transfer of Eµ-TCL1 leukemia cells with the IDO1 modulator 1-methyl-D-tryptophan (1-MT) which resulted in a minor reduction in leukemia development which disappeared over time. 1-MT treatment further led to a partial rescue of the immune cell changes that are induced with CLL development. Similarly, treatment of leukemic mice with the clinically investigated IDO1 inhibitor epacadostat reduced the frequency of Tregs and initially delayed CLL development slightly, an effect that was, however, lost at later time points. In sum, despite the observed upregulation of IDO1 in CLL, its inhibition is not sufficient to control leukemia development in the Eµ-TCL1 adoptive transfer model.


Sign in / Sign up

Export Citation Format

Share Document