Killer Ig–like receptor-mediated control of natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation

Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 764-771 ◽  
Author(s):  
Lorenzo Moretta ◽  
Franco Locatelli ◽  
Daniela Pende ◽  
Emanuela Marcenaro ◽  
Maria Cristina Mingari ◽  
...  

Abstract Natural killer (NK) cells are key members of the innate immune system. In a self-environment, they sense and kill target cells lacking major histocompatibility complex class I molecules and release various cytokines on activation. The discovery of human leukocyte antigen (HLA) class I specific inhibitory receptors (including the allotype-specific killer immunoglobulin-like receptors), and of various activating receptors and their ligands, provided the basis for understanding the molecular mechanism of NK-cell activation and function, mainly resulting from the balance between activating and inhibitory signals. In an allogeneic setting, such as T cell–depleted haploidentical hematopoietic stem cell transplantation, NK cells may express inhibitory killer immunoglobulin-like receptors that are not engaged by any of the HLA class I alleles present on allogeneic cells. Such “alloreactive” NK cells greatly contribute both to eradication of leukemia blasts escaping the preparative regimen and to clearance of residual host dendritic cells and T lymphocytes (thus preventing graft-versus-host disease and graft rejection, respectively). Improved prevention of graft-versus-host disease might be achieved by redirecting to lymph nodes adoptively transferred, alloreactive NK cells by inducing CCR7-uptake in vitro. Recent studies suggested that, after immune-suppressive therapy, alloreactive NK cells from an HLA-haploidentical donor may prevent leukemia recurrence also in patients who have not received allogeneic hematopoietic stem cell transplantation.

Hematology ◽  
2016 ◽  
Vol 2016 (1) ◽  
pp. 106-118 ◽  
Author(s):  
Rohtesh S. Mehta ◽  
Katayoun Rezvani

Abstract Natural killer (NK) cell function is regulated by a fine balance between numerous activating and inhibitory receptors, of which killer-cell immunoglobulin-like receptors (KIRs) are among the most polymorphic and comprehensively studied. KIRs allow NK cells to recognize downregulation or the absence of HLA class I molecules on target cells (known as missing-self), a phenomenon that is commonly observed in virally infected cells or cancer cells. Because KIR and HLA genes are located on different chromosomes, in an allogeneic environment such as after hematopoietic stem cell transplantation, donor NK cells that express an inhibitory KIR for an HLA class I molecule that is absent on recipient targets (KIR/KIR-ligand mismatch), can recognize and react to this missing self and mediate cytotoxicity. Accumulating data indicate that epistatic interactions between KIR and HLA influence outcomes in several clinical conditions. Herein, we discuss the genetic and functional features of KIR/KIR-ligand interactions in hematopoietic stem cell transplantation and how these data can guide donor selection. We will also review clinical studies of adoptive NK cell therapy in leukemia and emerging data on the use of genetically modified NK cells that could broaden the scope of cancer immunotherapy.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1589
Author(s):  
Ane Orrantia ◽  
Iñigo Terrén ◽  
Gabirel Astarloa-Pando ◽  
Olatz Zenarruzabeitia ◽  
Francisco Borrego

Natural killer (NK) cells are phenotypically and functionally diverse lymphocytes with the ability to recognize and kill malignant cells without prior sensitization, and therefore, they have a relevant role in tumor immunosurveillance. NK cells constitute the main lymphocyte subset in peripheral blood in the first week after hematopoietic stem cell transplantation (HSCT). Although the role that NK cells play in allogenic HSCT settings has been documented for years, their significance and beneficial effects associated with the outcome after autologous HSCT are less recognized. In this review, we have summarized fundamental aspects of NK cell biology, such as, NK cell subset diversity, their effector functions, and differentiation. Moreover, we have reviewed the factors that affect autologous HSCT outcome, with particular attention to the role played by NK cells and their receptor repertoire in this regard.


Sign in / Sign up

Export Citation Format

Share Document