scholarly journals Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis

Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1379-1389 ◽  
Author(s):  
Pedro Ramos ◽  
Ella Guy ◽  
Nan Chen ◽  
Catia C. Proenca ◽  
Sara Gardenghi ◽  
...  

Abstract In hereditary hemochromatosis, mutations in HFE lead to iron overload through abnormally low levels of hepcidin. In addition, HFE potentially modulates cellular iron uptake by interacting with transferrin receptor, a crucial protein during erythropoiesis. However, the role of HFE in this process was never explored. We hypothesize that HFE modulates erythropoiesis by affecting dietary iron absorption and erythroid iron intake. To investigate this, we used Hfe-KO mice in conditions of altered dietary iron and erythropoiesis. We show that Hfe-KO mice can overcome phlebotomy-induced anemia more rapidly than wild-type mice (even when iron loaded). Second, we evaluated mice combining the hemochromatosis and β-thalassemia phenotypes. Our results suggest that lack of Hfe is advantageous in conditions of increased erythropoietic activity because of augmented iron mobilization driven by deficient hepcidin response. Lastly, we demonstrate that Hfe is expressed in erythroid cells and impairs iron uptake, whereas its absence exclusively from the hematopoietic compartment is sufficient to accelerate recovery from phlebotomy. In summary, we demonstrate that Hfe influences erythropoiesis by 2 distinct mechanisms: limiting hepcidin expression under conditions of simultaneous iron overload and stress erythropoiesis, and impairing transferrin-bound iron uptake by erythroid cells. Moreover, our results provide novel suggestions to improve the treatment of hemochromatosis.

Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 376-381 ◽  
Author(s):  
Hiroshi Kawabata ◽  
Robert E. Fleming ◽  
Dorina Gui ◽  
Seo Y. Moon ◽  
Takayuki Saitoh ◽  
...  

Abstract Transferrin receptor 2 (TfR2) is a membrane glycoprotein that mediates cellular iron uptake from holotransferrin. Homozygous mutations of this gene cause one form of hereditary hemochromatosis in humans. We recently reported that homozygous TfR2(Y245X) mutant mice, which correspond to the TfR2(Y250X) mutation in humans, showed a phenotype similar to hereditary hemochromatosis. In this study, we further analyzed the phenotype as well as iron-related gene expression in these mice by comparing the TfR2-mutant and wild-type siblings. Northern blot analyses showed that the levels of expression of hepcidin mRNA in the liver were generally lower, whereas those of duodenal DMT1, the main transporter for uptake of dietary iron, were higher in the TfR2-mutant mice as compared to the wild-type siblings. Expression of hepcidin mRNA in the TfR2 mutant mice remained low even after intraperitoneal iron loading. In isolated hepatocytes from both wild-type and TfR2 mutant mice, interleukin-6 and lipopolysaccharide each induced expression of hepcidin mRNA. These results suggest that up-regulation of hepcidin expression by inflammatory stimuli is independent of TfR2 and that TfR2 is upstream of hepcidin in the regulatory pathway of body iron homeostasis. (Blood. 2005;105:376-381)


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4251-4251
Author(s):  
Pedro Ramos ◽  
Ella Guy ◽  
Robert W Grady ◽  
Maria de Sousa ◽  
Stefano Rivella

Abstract Abstract 4251 A deficient hepcidin response to iron is the principal mechanism responsible for increased iron uptake from the diet leading to iron overload. In hereditary hemochromatosis (HH), mutations in the HFE gene lead to iron overload through abnormally low levels of hepcidin. Interestingly, hepcidin has been shown to respond to a variety of stimuli, including iron, hypoxia, erythropoiesis and inflammation, requiring integration of the respective signals for its regulation. Further studies showed that HFE/Hfe could also modulate cellular iron uptake by associating with the transferrin receptor-1 (Tfrc), a crucial protein for iron uptake by erythroid cells. In addition, some studies have reported altered erythropoietic values in HH patients. Despite these findings, the role of Hfe in erythropoiesis was never explored. We hypothesized that Hfe influences erythropoiesis by two distinct mechanisms: 1) limiting hepcidin expression, thereby increasing iron availability, under conditions of simultaneous iron overload and stress erythropoiesis; 2) participating directly in the control of transferrin-bound iron uptake by erythroid cells. To test this hypothesis we investigated the role of Hfe in erythropoiesis, aiming to uncover the relative contribution of each of the aforementioned mechanisms. When erythropoiesis was challenged by phlebotomy, Hfe-KO animals were able to recover faster from anemia (p≤0.05) than either normal or iron overloaded wt mice. In Hfe-KO mice, despite their increased iron load, downregulation of hepcidin in response to phlebotomy or erythropoietin administration was comparable to that seen in wt mice. In contrast, iron overloaded wt mice showed increased hepcidin expression both at steady state and after erythropoietic stimulation compared to wt or Hfe-KO mice. In phlebotomized mice fed a standard diet, analysis of serum iron and transferrin saturation indicated that wt mice on the standard diet were able to increase their serum iron very rapidly. After 24 hours, both wt and Hfe-KO mice had similar serum iron and transferrin saturation levels. On the other hand, wt mice kept on an iron deficient diet over the course of phlebotomy, were unable to overcome the phlebotomy-induced anemia. In contrast, Hfe-KO mice fed the low iron diet were able to recover from anemia, although at a slower pace than either Hfe-KO or wt mice on a standard diet. These data indicate that gastrointestinal iron absorption in both wt and Hfe-KO mice is a major factor leading to recovery from anemia, although the excess iron in the liver of Hfe-KO mice contributes to restoration of the red blood cell reservoir. Phlebotomy is the main tool utilized to treat iron overload in HH patients. However, our data suggests that this treatment leads to both mobilization of iron from stores and increased gastrointestinal iron absorption. These observations suggest that patients might benefit from a controlled iron diet or from supplementation with hepcidin or an hepcidin agonist to limit iron absorption. Next, we determined that Hfe is expressed in erythroid cells and that it interacts with Tfrc in murine erythroleukemia cells. Moreover, we discovered that the level of Tfrc expression in Hfe-KO cells is 80% of that seen in wt cells, as measured by flow cytometry. This observation, together with measurement of iron uptake using 59Fe-saturated transferrin, indicated that Hfe-KO erythroid cells take up significantly more iron than wt cells. To confirm that Hfe plays a role in erythropoiesis independent from that in the liver, we transplanted Hfe-KO or wt bone marrow cells into lethally irradiated wt recipients and analyzed their recovery from phlebotomy. We observed that recovery from anemia was faster in Hfe→wt than in wt→wt and was associated with increased mean corpuscular hemoglobin levels, suggesting that lack of Hfe in the hematopoietic compartment can lead to increased hemoglobin production. In summary, our results indicate that lack of Hfe enhances iron availability for erythropoiesis by two distinct mechanisms. On the one hand, Hfe plays an important role in maintaining erythroid iron homeostasis by limiting the response of hepcidin to iron, particularly under conditions of erythropoietic stimulation. On the other hand, lack of Hfe contributes directly to increased iron intake by erythroid progenitors, even in the absence of iron overload. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 429-429
Author(s):  
Daniel F Wallace ◽  
Cameron J McDonald ◽  
Eriza S Secondes ◽  
Lesa Ostini ◽  
Gautam Rishi ◽  
...  

Abstract Iron deficiency and iron overload are common clinical conditions that impact on the health and wellbeing of up to 30% of the world’s population. Understanding mechanisms regulating iron homeostasis will provide improved strategies for treating these disorders. The liver-expressed proteins matriptase-2 (encoded by TMPRSS6), HFE and transferrin receptor 2 (TFR2) play important and opposing roles in systemic iron homeostasis by regulating expression of the iron regulatory hormone hepcidin. Mutations in TMPRSS6 lead to iron refractory iron deficiency anemia, whereas mutations in HFE and TFR2 lead to the iron overload disorder hereditary hemochromatosis. To elucidate the competing roles of these hepcidin regulators, we created mice lacking matriptase-2, Hfe and Tfr2. Tmprss6 -/-/Hfe-/-/Tfr2-/- mice had iron deficiency anemia resulting from hepatic hepcidin over-expression and activation of Smad1/5/8, indicating that matriptase-2 predominates over Hfe and Tfr2 in hepcidin regulation. Surprisingly, this anemia was more severe than in the Tmprss6-/- mice, demonstrated by more extensive alopecia, lower hematocrit and significant extramedullary erythropoiesis in the spleen. There was increased expression of erythroid-specific genes in the spleens of Tmprss6-/-/Hfe-/-/Tfr2-/- mice, consistent with the extramedullary erythropoiesis. Expression of Tfr2 but not Hfe in the spleen was increased in the Tmprss6-/- mice compared to wild type and correlated with the expression of erythroid genes, suggesting that Tfr2 is expressed in erythroid cells. Further analysis of gene expression in the bone marrow suggests that the loss of Tfr2 in the erythroid cells of Tmprss6-/-/Hfe-/-/Tfr2-/- mice causes a delay in the differentiation process leading to a more severe phenotype. In conclusion, our results indicate that Hfe and Tfr2 act upstream of matriptase-2 in hepcidin regulation or in a way that is overridden when matriptase-2 is deleted. These results indicate that inhibition of matriptase-2 would be useful in the treatment of iron overload conditions such as hereditary hemochromatosis. We have also identified a novel role for Tfr2 in erythroid differentiation that is separate from its canonical role as a regulator of iron homeostasis in the liver. This important role of Tfr2 in erythropoiesis only becomes apparent during conditions of iron restriction. Our results provide novel insights into mechanisms regulating and linking iron homeostasis and erythropoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3915-3921 ◽  
Author(s):  
H.D. Riedel ◽  
M.U. Muckenthaler ◽  
S.G. Gehrke ◽  
I. Mohr ◽  
K. Brennan ◽  
...  

Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder of iron metabolism. More than 80% of HH patients are homozygous for a point mutation in a major histocompatibility complex (MHC) class I type protein (HFE), which results in a lack of HFE expression on the cell surface. A previously identified interaction of HFE and the transferrin receptor suggests a possible regulatory role of HFE in cellular iron absorption. Using an HeLa cell line stably transfected with HFE under the control of a tetracycline-sensitive promoter, we investigated the effect of HFE expression on cellular iron uptake. We demonstrate that the overproduction of HFE results in decreased iron uptake from diferric transferrin. Moreover, HFE expression activates the key regulators of intracellular iron homeostasis, the iron-regulatory proteins (IRPs), implying that HFE can affect the intracellular “labile iron pool.” The increase in IRP activity is accompanied by the downregulation of the iron-storage protein, ferritin, and an upregulation of transferrin receptor levels. These findings are discussed in the context of the pathophysiology of HH and a possible role of iron-responsive element (IRE)-containing mRNAs.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 371-376 ◽  
Author(s):  
Sven G. Gehrke ◽  
Hasan Kulaksiz ◽  
Thomas Herrmann ◽  
Hans-Dieter Riedel ◽  
Karin Bents ◽  
...  

Abstract Experimental data suggest the antimicrobial peptide hepcidin as a central regulator in iron homeostasis. In this study, we characterized the expression of human hepcidin in experimental and clinical iron overload conditions, including hereditary hemochromatosis. Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we determined expression of hepcidin and the most relevant iron-related genes in liver biopsies from patients with hemochromatosis and iron-stain-negative control subjects. Regulation of hepcidin mRNA expression in response to transferrin-bound iron, non-transferrin-bound iron, and deferoxamine was analyzed in HepG2 cells. Hepcidin expression correlated significantly with serum ferritin levels in controls, whereas no significant up-regulation was observed in patients with hemochromatosis despite iron-overload conditions and high serum ferritin levels. However, patients with hemochromatosis showed an inverse correlation between hepcidin transcript levels and the serum transferrin saturation. Moreover, we found a significant correlation between hepatic transcript levels of hepcidin and transferrin receptor-2 irrespective of the iron status. In vitro data indicated that hepcidin expression is down-regulated in response to non-transferrin-bound iron. In conclusion, the presented data suggest a close relationship between the transferrin saturation and hepatic hepcidin expression in hereditary hemochromatosis. Although the causality is not yet clear, this interaction might result from a down-regulation of hepcidin expression in response to significant levels of non-transferrin-bound iron. (Blood. 2003;102:371-376)


Metallomics ◽  
2017 ◽  
Vol 9 (10) ◽  
pp. 1367-1375 ◽  
Author(s):  
Elena Gammella ◽  
Paolo Buratti ◽  
Gaetano Cairo ◽  
Stefania Recalcati

The transferrin receptor (TfR1), which mediates cellular iron uptake through clathrin-dependent endocytosis of iron-loaded transferrin, plays a key role in iron homeostasis.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3540-3540
Author(s):  
Roopa Taranath ◽  
Gregory Bourne ◽  
Li Zhao ◽  
Brian Frederick ◽  
Chelsea King ◽  
...  

Hepcidin-Ferroportin axis dictates optimal absorption of dietary iron as well as systemic iron levels. This is crucial for providing sufficient iron needed for cellular functions while also preventing iron toxicity. PTG-300 (currently in a Phase 2 clinical study for beta-thalassemia) is a peptide mimetic of natural hepcidin that targets the major iron transporter, ferroportin, and causes its internalization & subsequent degradation. The pharmacodynamic effects of PTG-300 are the reductions in serum iron and transferrin-saturation (TSAT) due to reduced ferroportin expression on cells that store or recycle iron. We chose to demonstrate in two mouse models with iron dysregulation, that our hepcidin mimetics improve disease parameters by correcting dysregulated iron homeostasis. Beta-thalassemia is characterized by an imbalance in alpha-beta globin ratio in erythrocytes due to underlying beta-globin gene mutations. The excess alpha-globin, along with associated heme and iron, form "hemichrome" aggregates that integrate into the membranes of RBCs. The labile iron in these hemichromes generate ROS and are toxic to the cells, causing premature hemolysis of circulating RBCs and reduction in their lifespan. In a mouse model for beta-thalassemia, Hbbth3/+, we investigated the efficacy of a hepcidin mimetic in reducing hemichrome aggregation by limiting iron in the erythroid progenitors, and thereby reducing iron toxicity in RBCs. Subcutaneous injections of 1 mg/kg PN-8772 (analog of PTG-300 which has similar in vitro and in vivo potency) were administered every other day (Q2D) for a period of 4 weeks. At the end of the study, hemichrome aggregates were extracted from RBC membranes, and then analyzed on a TAU gel to quantify the cytoskeleton α-globin band intensities (Casu et al, Blood 2016). Hemichrome aggregates were reduced in groups treated with PN-8772 as compared to untreated controls, with concurrent improvements in hemoglobin and reductions in reticulocytes. Treatment with oral chelator Deferasirox (200 mg/kg; daily) did not show reduction in hemichrome aggregation, while it significantly lowered liver iron-overload. RBCs in Hbbth3/+ mice express aberrant morphologies due to the underlying hemichrome toxicity, similar to the phenotypes expressed in human beta-thalassemia. Chronic treatment with PN-8772 (as described above) also resulted in a significant reduction in aberrant morphologies that are indicative of hemolysis, viz. spherocytes & schistocytes. In a separate study, flow cytometry was used to monitor the survival of RBCs in Hbbth3/+ mice. At the end of 4 weeks of PTG-300 treatment (1 mg/kg, Q2D) the RBCs were marked by an in-life biotinylation method (Schmidt et al, Blood 2013) and subsequently followed over 49 days with continued treatment. There was a significant increase in survival of RBCs as compared to untreated controls. In summary, we demonstrate that by limiting iron in the developing erythroblasts and iron toxicity in RBCs, PTG-300 therapy has the potential to improve the quality of the RBCs and their oxygen carrying capacity, thereby ameliorating anemia. In beta-thalassemia, the clinical presentation includes secondary iron overload in various organs because of hyperabsorption of dietary iron, exacerbated by frequent blood transfusions that are required for management of anemia. Similarly, in hereditary hemochromatosis (HH) there is hyperabsorption of dietary iron leading to primary iron overload. We used a hemochromatosis mouse model (HFE) to demonstrate the effectiveness of PTG-300 therapy in limiting systemic iron toxicity by regulating TSAT and in preventing hyper-iron absorption. The model is characterized by homozygous deletion of HFE with severely low hepcidin levels and consequently very high TSAT (~100%). In this model, a single dose of PTG-300 at 2.5mg/kg reduced TSAT by ~60% at 10-hour post-dose, as compared to untreated controls. Sustained TSAT reduction by chronic treatment will therefore mitigate toxic effects of labile iron. Two weeks of chronic treatment with PTG-300 (2.5 mg/kg, Q2D) effectively prevented iron deposition in the liver. Overall our data suggests that PTG-300 has the potential to be an effective treatment in hemoglobinopathies, like beta-thalassemia, and Hereditary Hemochromatosis, by reducing systemic labile iron toxicity by limiting TSAT, preventing organ iron deposition & improving anemia (in case of thalassemia). Disclosures Taranath: Protagonist Therapeutics: Employment. Bourne:Protagonist Therapeutics: Employment. Zhao:Protagonist Therapeutics: Employment. Frederick:Protagonist Therapeutics: Employment. King:Protagonist Therapeutics: Employment. Liu:Protagonist Therapeutics: Employment.


Blood ◽  
2003 ◽  
Vol 101 (5) ◽  
pp. 2008-2014 ◽  
Author(s):  
Todd M. Vogt ◽  
Aaron D. Blackwell ◽  
Anthony M. Giannetti ◽  
Pamela J. Bjorkman ◽  
Caroline A. Enns

Cellular iron uptake in most tissues occurs via endocytosis of diferric transferrin (Tf) bound to the transferrin receptor (TfR). Recently, a second transferrin receptor, transferrin receptor 2 (TfR2), has been identified and shown to play a critical role in iron metabolism. TfR2 is capable of Tf-mediated iron uptake and mutations in this gene result in a rare form of hereditary hemochromatosis unrelated to the hereditary hemochromatosis protein, HFE. Unlike TfR, TfR2 expression is not controlled by cellular iron concentrations and little information is currently available regarding the role of TfR2 in cellular iron homeostasis. To investigate the relationship between TfR and TfR2, we performed a series of in vivo and in vitro experiments using antibodies generated to each receptor. Western blots demonstrate that TfR2 protein is expressed strongest in erythroid/myeloid cell lines. Metabolic labeling studies indicate that TfR2 protein levels are approximately 20-fold lower than TfR in these cells. TfR and TfR2 have similar cellular localizations in K562 cells and coimmunoprecipitate to only a very limited extent. Western analysis of the receptors under nonreducing conditions reveals that they can form heterodimers.


2020 ◽  
Vol 4 (16) ◽  
pp. 3853-3863
Author(s):  
Cyril Renassia ◽  
Sabine Louis ◽  
Sylvain Cuvellier ◽  
Nadia Boussetta ◽  
Jean-Christophe Deschemin ◽  
...  

Abstract Iron is required for the oxidative response of neutrophils to allow the production of reactive oxygen species (ROS). However, neutrophil function may be severely altered in conditions of iron overload, as observed in chronically transfused patients. Therefore, a tight regulation of neutrophil iron homeostasis seems to be critical for avoiding iron toxicity. Hepcidin is the key iron regulator in organisms; however, no studies have investigated its role in maintaining neutrophil iron homeostasis or characterized neutrophil function in patients with hereditary hemochromatosis (HH), a common iron overload genetic disorder that results from a defect in hepcidin production. To explore these issues, we studied 2 mouse models of iron overload: an experimentally induced iron overload model (EIO), in which hepcidin is increased, and a genetic HH model of iron overload with a deletion of hepatic hepcidin. We found that iron-dependent increase of hepatic hepcidin results in neutrophil intracellular iron trapping and consecutive defects in oxidative burst activity. In contrast, in both HH mouse models and HH patients, the lack of hepcidin expression protects neutrophils from toxic iron accumulation. Moreover, systemic iron overload correlated with a surprising neutrophil priming and resulted in a more powerful oxidative burst. Indeed, important factors in neutrophil priming and activation, such as tumor necrosis factor α (TNF-α), VCAM-1, and ICAM-1 are increased in the plasma of HH patients and are associated with an increase in HH neutrophil phagocytosis capacity and a decrease in L-selectin surface expression. This is the first study to characterize neutrophil iron homeostasis and associated functions in patients with HH.


Blood ◽  
1999 ◽  
Vol 94 (11) ◽  
pp. 3915-3921 ◽  
Author(s):  
H.D. Riedel ◽  
M.U. Muckenthaler ◽  
S.G. Gehrke ◽  
I. Mohr ◽  
K. Brennan ◽  
...  

Abstract Hereditary hemochromatosis (HH) is a common autosomal-recessive disorder of iron metabolism. More than 80% of HH patients are homozygous for a point mutation in a major histocompatibility complex (MHC) class I type protein (HFE), which results in a lack of HFE expression on the cell surface. A previously identified interaction of HFE and the transferrin receptor suggests a possible regulatory role of HFE in cellular iron absorption. Using an HeLa cell line stably transfected with HFE under the control of a tetracycline-sensitive promoter, we investigated the effect of HFE expression on cellular iron uptake. We demonstrate that the overproduction of HFE results in decreased iron uptake from diferric transferrin. Moreover, HFE expression activates the key regulators of intracellular iron homeostasis, the iron-regulatory proteins (IRPs), implying that HFE can affect the intracellular “labile iron pool.” The increase in IRP activity is accompanied by the downregulation of the iron-storage protein, ferritin, and an upregulation of transferrin receptor levels. These findings are discussed in the context of the pathophysiology of HH and a possible role of iron-responsive element (IRE)-containing mRNAs.


Sign in / Sign up

Export Citation Format

Share Document