extramedullary erythropoiesis
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 5)

H-INDEX

11
(FIVE YEARS 1)

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3072-3072
Author(s):  
Sayantani Sinha ◽  
Ritama Gupta ◽  
Amaliris Guerra ◽  
Paige Mc Veigh ◽  
Sara Gardenghi ◽  
...  

Abstract Anemia of inflammation (AI) is the second most common anemia after iron deficiency anemia. The predominant regulators of AI are the cytokine interleukin 6 (IL6) and the hormone hepcidin (HAMP). IL6 is an inflammatory cytokine which also limits iron absorption by inducing HAMP, which promotes the degradation of the iron exporter ferroportin. We hypothesized that knocking down both HAMP and IL6 simultaneously will help us to understand if their mode of action in AI is uniquely limited to iron absorption and erythroid iron intake or if they also have independent roles. Henceforth, we generated IL6/HampKO (DKO) mice and, unexpectedly, observed that IL6KO mice showed the best recovery in bone marrow (BM) erythropoiesis (using flow cytometry analysis and looking at the absolute number of erythroid progenitors) after BA administration when compared to wild type (WT), HampKO and DKO mice. The best differences were observed at 14 days post BA administration. In contrast, the extramedullary erythropoiesis in the spleen was more pronounced in HampKO and DKO mice compared to WT and IL6KO animals, indicating that the mechanism impairing erythropoiesis in the BM did not affect erythroid progenitors in the spleen. These observations suggest that HAMP and IL6 proteins contribute independently to AI, with IL6 having some effect on the erythropoiesis in the BM independent from the IL6-HAMP axis leading to iron restriction. Furthermore, these observations raised the question why both HampKO and DKO mice showed reduced BM erythropoiesis compared to IL6KO animals. We investigated inflammatory cytokines and altered iron parameters as potential mediators of impaired erythropoiesis. We compared several inflammatory cytokines, including IL6, TNFa and INFg following BA administration: cytokine levels were elevated 6 hrs, reduced 48hrs after BA administration and moderately increased again two weeks later. Interestingly, among all the cytokines the levels of IL1b were significantly attenuated in IL6KO mice at day 14 compared to WT and HampKO animals. Moreover, transferrin saturation and NTBI levels were higher in HampKO and DKO animals compared to IL6KO mice. These observations strongly suggested that BM erythropoiesis is more sensitive to inflammatory insult in presence of an excess of iron, while extramedullary erythropoiesis is mildly affected and can eventually thrive under supra-physiological transferrin saturation levels. To test if increased iron affects BM erythropoiesis in presence of inflammation, we treated both WT and IL6KO mice with combination of iron dextran and BA. Both WT and IL6KO mice were treated with a combination of BA and iron at day 0 followed by alternate day of iron injections showed the poorest erythropoiesis in the BM and became rapidly sick, although the effect was significantly more pronounced in WT animals, as suggested by their survival curve. Since mycobacterium infections lead to NLPR3 inflammasome activation and Caspase1 upregulation (Marim et al. Semin Immunopathology 2017), we investigated how erythroid progenitors were affected. By flow cytometry analyses, we observed a significantly higher upregulation of the Caspase1 protein in WT and DKO mice compared to IL6KO animals. This was also reproduced by culturing WT or IL6KO BM progenitor erythroid cells in presence of mouse serum derived from WT or IL6KO mice treated with BA. Most importantly, IL6KO mice treated with BA and iron showed the highest levels of Caspase1 compared to only BA treated IL6KO mice, indicating that excess of iron abrogates the beneficial effect of IL6 deficiency on erythropoiesis under conditions of AI. Furthermore, using flow cytometry, we observed in WT mice treated with BA or BA and iron a significant increase in mitochondrial mass, which is an indicator of mitochondrial stress. The mitochondrial mass was reduced in IL6KO mice treated with BA, but again increased in IL6KO mice treated with BA and iron. We have also observed an increase of mitochondrial superoxide by confocal microscopy in WT mice compared to IL6KO mice treated with BA. Altogether, these data support a model where inflammation in presence of an excess of iron impairs BM erythropoiesis through mechanisms at least in part mediated by Caspase1 and mitochondrial dysfunction, while iron excess itself is sufficient to boost extramedullary erythropoiesis to compensate and sustain RBC production. Disclosures Vinchi: PharmaNutra: Research Funding; Vifor Pharma: Research Funding; Silence Therapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Research Funding. Rivella: Ionis Pharmaceuticals: Consultancy; Meira GTx: Consultancy.


Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100819
Author(s):  
Drenka Trivanovic ◽  
Theresa Kreuzahler ◽  
Bianca Schlierf ◽  
Ana Rita Pereira ◽  
Maximilian Rudert ◽  
...  

2020 ◽  
Author(s):  
Meghan E. Turnis ◽  
Ewa Kaminska ◽  
Kaitlyn H. Smith ◽  
Brittany J. Kartchner ◽  
Peter Vogel ◽  
...  

AbstractMature erythrocytes are under tight homeostatic control with the need for constant replacement from progenitors to replace damaged or obsolete red blood cells (RBCs). This process is regulated largely by erythropoietin (Epo) which promotes the survival of erythroid progenitors and facilitates their differentiation and proliferation. Ablation of Bcl2l1 (which encodes BCL-xL) results in embryonic lethality with a lack of mature erythrocytes but does not perturb erythroid progenitors. Similarly, conditional Bcl2l1-deletion results in severe anemia with the death of late erythroid progenitors and induction of extramedullary erythropoiesis. While BCL-xL is critical to the survival of mature erythrocytes, it is still unclear whether other anti-apoptotic molecules mediate survival during earlier stages of erythropoiesis. Here, we demonstrate that erythroid-specific Mcl1-deletion results in embryonic lethality due to severe anemia caused by a lack of mature RBCs. Mcl1-deleted embryos exhibit stunted growth, ischemic necrosis, and decreased RBCs in the blood. Furthermore, we demonstrate that the dependence on MCL-1 is only during early erythropoiesis, whereas during later stages the cells become MCL-1-independent and upregulate the expression of BCL-xL. Functionally, MCL-1 relies upon its ability to prevent apoptosis to promote erythroid development since co-deletion of the pro-apoptotic effectors Bax and Bak can overcome the requirement for MCL-1 expression. Furthermore, ectopic expression of human BCL2 in erythroid progenitors can compensate for Mcl1 deletion, indicating redundancy between these two anti-apoptotic family members. These data clearly demonstrate a requirement for MCL-1 in promoting survival of early erythroid progenitors.


2017 ◽  
Vol 83 (1) ◽  
pp. 144-150 ◽  
Author(s):  
Ines G. Alamo ◽  
Kolenkode B. Kannan ◽  
Tyler J. Loftus ◽  
Harry Ramos ◽  
Philip A. Efron ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2656-2656
Author(s):  
Mikko Myllymäki ◽  
Jenni Määttä ◽  
Elitsa Dimova ◽  
Valerio Izzi ◽  
Timo Väisänen ◽  
...  

Abstract Erythrocytosis, an increase in absolute red cell mass, is mainly driven by erythropoietin, while hypoxia-inducible factor (HIF) regulates the expression of a number of genes involved in it, including erythropoietin. Mutations in HIF prolyl 4-hydroxylase 2 (HIF-P4H-2/PHD2/EGLN1), the major regulator of the stability of HIFα subunits, are found in familiar erythrocytosis, and large-spectrum conditional inactivation of HIF-P4H-2 in mice leads to severe erythrocytosis and premature death. Although bone marrow is the primary site for erythropoiesis, spleen retains a capability for extramedullary erythropoiesis. We studied HIF-P4H-2 hypomorphic mice (Hif-p4h-2gt/gt) which show slightly induced erythropoiesis only upon aging despite no increased erythropoietin levels. Spleen was identified as the site of extramedullary erythropoiesis in these mice. Hematopoietic stem cells (HSCs) from spleens of the Hif-p4h-2gt/gt mice showed increased growth of BFU-Es and the mice were protected against anemia by induced extramedullary erythropoiesis. HIF-1α and HIF-2α were stabilized in the spleens, while the Notch ligands and target Jag1, Jag2, Dll1 and Hes1 became downregulated upon aging dependent on HIF-2α. Inhibition of Notch signaling in wild-type spleen HSCs phenocopied the increased growth of BFU-Es in the Hif-p4h-2gt/gt mice. We conclude that HIFα stabilization can mediate non-erythropoietin-driven extramedullary erythropoiesis in the spleen via altered Notch signaling. Disclosures Myllyharju: FibroGen Inc.: Equity Ownership, Research Funding.


2016 ◽  
Vol 37 (2) ◽  
Author(s):  
Mikko N. M. Myllymäki ◽  
Jenni Määttä ◽  
Elitsa Y. Dimova ◽  
Valerio Izzi ◽  
Timo Väisänen ◽  
...  

ABSTRACT Erythrocytosis is driven mainly by erythropoietin, which is regulated by hypoxia-inducible factor (HIF). Mutations in HIF prolyl 4-hydroxylase 2 (HIF-P4H-2) (PHD2/EGLN1), the major downregulator of HIFα subunits, are found in familiar erythrocytosis, and large-spectrum conditional inactivation of HIF-P4H-2 in mice leads to severe erythrocytosis. Although bone marrow is the primary site for erythropoiesis, spleen remains capable of extramedullary erythropoiesis. We studied HIF-P4H-2-deficient (Hif-p4h-2 gt/gt ) mice, which show slightly induced erythropoiesis upon aging despite nonincreased erythropoietin levels, and identified spleen as the site of extramedullary erythropoiesis. Splenic hematopoietic stem cells (HSCs) of these mice exhibited increased erythroid burst-forming unit (BFU-E) growth, and the mice were protected against anemia. HIF-1α and HIF-2α were stabilized in the spleens, while the Notch ligand genes Jag1, Jag2, and Dll1 and target Hes1 became downregulated upon aging HIF-2α dependently. Inhibition of Notch signaling in wild-type spleen HSCs phenocopied the increased BFU-E growth. HIFα stabilization can thus mediate non-erythropoietin-driven splenic erythropoiesis via altered Notch signaling.


2016 ◽  
Vol 84 (10) ◽  
pp. 2833-2841 ◽  
Author(s):  
Lin-Xi Li ◽  
Joseph M. Benoun ◽  
Kipp Weiskopf ◽  
K. Christopher Garcia ◽  
Stephen J. McSorley

Salmonellainfection profoundly affects host erythroid development, but the mechanisms responsible for this effect remain poorly understood. We monitored the impact ofSalmonellainfection on erythroid development and found that systemic infection induced anemia, splenomegaly, elevated erythropoietin (EPO) levels, and extramedullary erythropoiesis in a process independent ofSalmonellapathogenicity island 2 (SPI2) or flagellin. The circulating EPO level was also constitutively higher in mice lacking the expression of signal-regulatory protein α (SIRPα). The expression level of EPO mRNA was elevated in the kidney and liver but not increased in the spleens of infected mice despite the presence of extramedullary erythropoiesis in this tissue. In contrast to data from a previous report, mice lacking EPO receptor (EPOR) expression on nonerythroid cells (EPOR rescued) had bacterial loads similar to those of wild-type mice followingSalmonellainfection. Indeed, treatment to reduce splenic erythroblasts and mature red blood cells correlated with elevated bacterial burdens, implying that extramedullary erythropoiesis benefits the host. Together, these findings emphasize the profound effect ofSalmonellainfection on erythroid development and suggest that the modulation of erythroid development has both positive and negative consequences for host immunity.


Sign in / Sign up

Export Citation Format

Share Document