scholarly journals Adult T-cell leukemia: molecular basis for clonal expansion and transformation of HTLV-1–infected T cells

Blood ◽  
2017 ◽  
Vol 129 (9) ◽  
pp. 1071-1081 ◽  
Author(s):  
Toshiki Watanabe

Abstract Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor–NF-κB signaling such as PLCG1, PRKCB, and CARD11 and gain-of function mutations in CCR4 and CCR7. Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1–infected CD4+ T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated.

2000 ◽  
Vol 74 (20) ◽  
pp. 9610-9616 ◽  
Author(s):  
Takashi Ohashi ◽  
Shino Hanabuchi ◽  
Hirotomo Kato ◽  
Hiromi Tateno ◽  
Fumiyo Takemura ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) in infected individuals after a long incubation period. To dissect the mechanisms of the development of the disease, we have previously established a rat model of ATL-like disease which allows examination of the growth and spread of HTLV-1 infected tumor cells, as well assessment of the effects of immune T cells on the development of the disease. In the present study, we induced HTLV-1 Tax-specific cytotoxic T lymphocyte (CTL) immunity by vaccination with Tax-coding DNA and examined the effects of the DNA vaccine in our rat ATL-like disease model. Our results demonstrated that DNA vaccine with Tax effectively induced Tax-specific CTL activity in F344/N Jcl-rnu/+ (nu/+) rats and that these CTLs were able to lyse HTLV-1 infected syngeneic T cells in vitro. Adoptive transfer of these immune T cells effectively inhibited the in vivo growth of HTLV-1-transformed tumor in F344/N Jcl-rnu/rnu (nu/nu) rats inoculated with a rat HTLV-1 infected T cell line. Vaccination with mutant Tax DNA lacking transforming ability also induced efficient anti-tumor immunity in this model. Our results indicated a promising effect for DNA vaccine with HTLV-1 Tax against HTLV-1 tumor development in vivo.


2003 ◽  
Vol 77 (14) ◽  
pp. 7728-7735 ◽  
Author(s):  
Jianxin Ye ◽  
Li Xie ◽  
Patrick L. Green

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are distinct oncogenic retroviruses that infect several cell types but display their biological and pathogenic activity only in T cells. Previous studies have indicated that in vivo HTLV-1 has a preferential tropism for CD4+ T cells, whereas HTLV-2 in vivo tropism is less clear but appears to favor CD8+ T cells. Both CD4+ and CD8+ T cells are susceptible to HTLV-1 and HTLV-2 infection in vitro, and HTLV-1 has a preferential immortalization and transformation tropism of CD4+ T cells, whereas HTLV-2 immortalizes and transforms primarily CD8+ T cells. The molecular mechanism that determines this tropism of HTLV-1 and HTLV-2 has not been determined. HTLV-1 and HTLV-2 carry the tax and rex transregulatory genes in separate but partially overlapping reading frames. Since Tax has been shown to be critical for cellular transformation in vitro and interacts with numerous cellular processes, we hypothesized that the viral determinant of transformation tropism is encoded by tax. Using molecular clones of HTLV-1 (Ach) and HTLV-2 (pH6neo), we constructed recombinants in which tax and overlapping rex genes of the two viruses were exchanged. p19 Gag expression from proviral clones transfected into 293T cells indicated that both recombinants contained functional Tax and Rex but with significantly altered activity compared to the wild-type clones. Stable transfectants expressing recombinant viruses were established, irradiated, and cocultured with peripheral blood mononuclear cells. Both recombinants were competent to transform T lymphocytes with an efficiency similar to that of the parental viruses. Flow cytometry analysis indicated that HTLV-1 and HTLV-1/TR2 had a preferential tropism for CD4+ T cells and that HTLV-2 and HTLV-2/TR1 had a preferential tropism for CD8+ T cells. Our results indicate that tax/rex in different genetic backgrounds display altered functional activity but ultimately do not contribute to the different in vitro transformation tropisms. This first study with recombinants between HTLV-1 and HTLV-2 is the initial step in elucidating the different pathobiologies of HTLV-1 and HTLV-2.


2019 ◽  
Vol 93 (19) ◽  
Author(s):  
Veronica Galli ◽  
Christopher C. Nixon ◽  
Natasa Strbo ◽  
Maria Artesi ◽  
Maria F. de Castro-Amarante ◽  
...  

ABSTRACTHuman T cell leukemia virus type 1 (HTLV-1) is the ethological agent of adult T cell leukemia/lymphoma (ATLL) and a number of lymphocyte-mediated inflammatory conditions, including HTLV-1-associated myelopathy/tropical spastic paraparesis. HTLV-1orf-Iencodes two proteins, p8 and p12, whose functions in humans are to counteract innate and adaptive responses and to support viral transmission. However, thein vivorequirements fororf-Iexpression vary in different animal models. In macaques, the ablation oforf-Iexpression by mutation of its ATG initiation codon abolishes the infectivity of the molecular clone HTLV-1p12KO. In rabbits, HTLV-1p12KOis infective and persists efficiently. We used humanized mouse models to assess the infectivity of both wild-type HTLV-1 (HTLV-1WT) and HTLV-1p12KO. We found that NOD/SCID/γC−/−c-kit+mice engrafted with human tissues 1 day after birth (designated NSG-1d mice) were highly susceptible to infection by HTLV-1WT, with a syndrome characterized by the rapid polyclonal proliferation and infiltration of CD4+CD25+T cells into vital organs, weight loss, and death. HTLV-1 clonality studies revealed the presence of multiple clones of low abundance, confirming the polyclonal expansion of HTLV-1-infected cellsin vivo. HTLV-1p12KOinfection in a bone marrow-liver-thymus (BLT) mouse model prone to graft-versus-host disease occurred only following reversion of theorf-Iinitiation codon mutation within weeks after exposure and was associated with high levels of HTLV-1 DNA in blood and the expansion of CD4+CD25+T cells. Thus, the incomplete reconstitution of the human immune system in BLT mice may provide a window of opportunity for HTLV-1 replication and the selection of viral variants with greater fitness.IMPORTANCEHumanized mice constitute a useful model for studying the HTLV-1-associated polyclonal proliferation of CD4+T cells and viral integration sites in the human genome. The rapid death of infected animals, however, appears to preclude the clonal selection typically observed in human ATLL, which normally develops in 2 to 5% of individuals infected with HTLV-1. Nevertheless, the expansion of multiple clones of low abundance in these humanized mice mirrors the early phase of HTLV-1 infection in humans, providing a useful model to investigate approaches to inhibit virus-induced CD4+T cell proliferation.


Retrovirology ◽  
2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Masao Matsuoka ◽  
Jean-Michel Mesnard

AbstractHuman T cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia-lymphoma (ATL) and inflammatory diseases. The HTLV-1 bZIP factor (HBZ) gene is constantly expressed in HTLV-1 infected cells and ATL cells. HBZ protein suppresses transcription of the tax gene through blocking the LTR recruitment of not only ATF/CREB factors but also CBP/p300. HBZ promotes transcription of Foxp3, CCR4, and T-cell immunoreceptor with Ig and ITIM domains (TIGIT). Thus, HBZ is critical for the immunophenotype of infected cells and ATL cells. HBZ also functions in its RNA form. HBZ RNA suppresses apoptosis and promotes proliferation of T cells. Since HBZ RNA is not recognized by cytotoxic T cells, HTLV-1 has a clever strategy for avoiding immune detection. HBZ plays central roles in maintaining infected T cells in vivo and determining their immunophenotype.


Blood ◽  
1995 ◽  
Vol 85 (7) ◽  
pp. 1865-1870 ◽  
Author(s):  
Y Furukawa ◽  
M Osame ◽  
R Kubota ◽  
M Tara ◽  
M Yoshida

Patients with human T-cell leukemia virus type-1 (HTLV-1)-associated myelopathy (HAM/TSP) generally harbor a much greater population of HTLV-1-infected T cells in peripheral blood mononuclear cells (PBMCs) than asymptomatic carriers. These cells are not malignant but frequently proliferate clonally. To investigate the possibility that higher expression of the viral activator Tax induces preferential proliferation of infected nonmalignant T cells in HAM/TSP patients, the expression of Tax mRNA in fresh PBMCs was analyzed by reverse transcriptase-mediated polymerase chain reaction. Total amount of Tax mRNA was higher in HAM/TSP patients than in carriers, but the expression level was almost the same as that in asymptomatic carriers when compared per infected cell. The expression levels in adult T-cell leukemia patients were significantly lower than those in HAM/TSP patients and asymptomatic carriers. These results indicate that tax gene is not expressed at a continuously high level in HAM/TSP patients who carry a high population of infected T cells, even in those with clonally proliferated infected T cells.


Blood ◽  
2002 ◽  
Vol 99 (5) ◽  
pp. 1505-1511 ◽  
Author(s):  
Osamu Yoshie ◽  
Ryuichi Fujisawa ◽  
Takashi Nakayama ◽  
Hitomi Harasawa ◽  
Hideaki Tago ◽  
...  

Chemokines and chemokine receptors play important roles in migration and tissue localization of various lymphocyte subsets. Here, we report the highly frequent expression of CCR4 in adult T-cell leukemia (ATL) and human T-cell leukemia virus type 1 (HTLV-1)–immortalized T cells. Flow cytometric analysis revealed that ATL and HTLV-1–immortalized T-cell lines consistently expressed CCR4. Inducible expression of HTLV-1 transcriptional activator tax in a human T-cell line Jurkat did not, however, up-regulate CCR4 mRNA. In vitro immortalization of peripheral blood T cells led to preferential outgrowth of CD4+ T cells expressing CCR4. We further demonstrated highly frequent expression of CCR4 in fresh ATL cells by (1) reverse transcriptase–polymerase chain reaction (RT-PCR) analysis of CCR4 expression in peripheral blood mononuclear cells (PBMCs) from patients with ATL and healthy controls; (2) flow cytometric analysis of CCR4-expressing cells in PBMCs from patients with ATL and healthy controls; (3) CCR4 staining of routine blood smears from patients with ATL; and (4) an efficient migration of fresh ATL cells to the CCR4 ligands, TARC/CCL17 and MDC/CCL22, in chemotaxis assays. Furthermore, we detected strong signals for CCR4, TARC, and MDC in ATL skin lesions by RT-PCR. Collectively, most ATL cases have apparently derived from CD4+ T cells expressing CCR4. It is now known that circulating CCR4+ T cells are mostly polarized to Th2 and also contain essentially all skin-seeking memory T cells. Thus, HTLV-1–infected CCR4+ T cells may have growth advantages by deviating host immune responses to Th2. CCR4 expression may also account for frequent infiltration of ATL into tissues such as skin and lymph nodes.


1994 ◽  
Vol 14 (2) ◽  
pp. 1374-1382
Author(s):  
C Béraud ◽  
S C Sun ◽  
P Ganchi ◽  
D W Ballard ◽  
W C Greene

Human T-cell leukemia virus type I (HTLV-I) is the etiologic agent of the adult T-cell leukemia, an aggressive and often fatal malignancy of activated human CD4 T cells. HTLV-I encodes an essential 40-kDa protein termed Tax that not only transactivates the long terminal repeat of this retrovirus but also induces an array of cellular genes. Tax-mediated transformation of T cells likely involves the deregulated expression of various cellular genes that normally regulate lymphocyte growth produced by altered activity of various endogenous host transcription factors. In particular, Tax is capable of modulating the expression or activity of various host transcription factors, including members of the NF-kappa B/Rel and CREB/ATF families, as well as the cellular factors HEB-1 and p67SRF. An additional distinguishing characteristic of HTLV-I infection is the profound state of viral latency that is present in circulating primary leukemic T cells. In this study, we demonstrate that HTLV-I Tax can physically associate with p100, the product of the Rel-related NF-kappa B2 gene, both in transfected cells and in HTLV-I-infected leukemic T-cell lines. Furthermore, the physical interaction of Tax with p100 leads to the inhibition of Tax-induced activation of the HTLV-I and human immunodeficiency virus type 1 long terminal repeats, reflecting p100-mediated cytoplasmic sequestration of the normally nuclearly expressed Tax protein. In contrast, a mutant of Tax that selectively fails to activate nuclear NF-kappa B expression does not associate with p100. Together, these results suggest that the cytoplasmic interplay of Tax and p100 may play an important role in the initiation and maintenance of HTLV-1 latency observed in adult T-cell leukemia.


2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Zaowen Song ◽  
Wencai Wu ◽  
Mengyun Chen ◽  
Wenzhao Cheng ◽  
Juntao Yu ◽  
...  

ABSTRACT Adult T-cell leukemia (ATL) is a highly aggressive T-cell malignancy induced by human T-cell leukemia virus type 1 (HTLV-1) infection. Long noncoding RNA (lncRNA) plays a critical role in the development and progression of multiple human cancers. However, the function of lncRNA in HTLV-1-induced oncogenesis has not been elucidated. In the present study, we show that the expression level of the lncRNA ANRIL was elevated in HTLV-1-infected cell lines and clinical ATL samples. E2F1 induced ANRIL transcription by enhancing its promoter activity. Knockdown of ANRIL in ATL cells repressed cellular proliferation and increased apoptosis in vitro and in vivo. As a mechanism for these actions, we found that ANRIL targeted EZH2 and activated the NF-κB pathway in ATL cells. This activation was independent of the histone methyltransferase (HMT) activity of EZH2 but required the formation of an ANRIL/EZH2/p65 ternary complex. A chromatin immunoprecipitation assay revealed that ANRIL/EZH2 enhanced p65 DNA binding capability. In addition, we observed that the ANRIL/EZH2 complex repressed p21/CDKN1A transcription through H3K27 trimethylation of the p21/CDKN1A promoter. Taken together, our results implicate that the lncRNA ANRIL, by cooperating with EZH2, supports the proliferation of HTLV-1-infected cells, which is thought to be critical for oncogenesis.IMPORTANCE Human T-cell leukemia virus type 1 (HTLV-1) is the pathogen that causes adult T-cell leukemia (ATL), which is a unique malignancy of CD4+ T cells. A role for long noncoding RNA (lncRNA) in HTLV-1-mediated cellular transformation has not been described. In this study, we demonstrated that the lncRNA ANRIL was important for maintaining the proliferation of ATL cells in vitro and in vivo. ANRIL was shown to activate NF-κB signaling through forming a ternary complex with EZH2 and p65. Furthermore, epigenetic inactivation of p21/CDKN1A was involved in the oncogenic function of ANRIL. To the best of our knowledge, this is the first study to address the regulatory role of the lncRNA ANRIL in ATL and provides an important clue to prevent or treat HTLV-1-associated human diseases.


1999 ◽  
Vol 73 (7) ◽  
pp. 6031-6040 ◽  
Author(s):  
Takashi Ohashi ◽  
Shino Hanabuchi ◽  
Hirotomo Kato ◽  
Yoshihiro Koya ◽  
Fumiyo Takemura ◽  
...  

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) has been shown to be the etiologic agent of adult T-cell leukemia (ATL), but the in vivo mechanism by which the virus causes the malignant transformation is largely unknown. In order to investigate the mechanisms of HTLV-1 leukemogenesis, we developed a rat model system in which ATL-like disease was reproducibly observed, following inoculation of various rat HTLV-1-immortalized cell lines. When previously established cell lines, F344-S1 and TARS-1, but not TART-1 or W7TM-1, were inoculated, systemic multiple tumor development was observed in adult nude (nu/nu) rats. FPM1 cells, newly established from a heterozygous (nu/+) rat syngeneic to nu/nurats, caused transient tumors only at the injection site in adult nu/nu rats, but could progressively grow in newborn nu/nu rats and metastasize in lymph nodes. The derivative cell line (FPM1-V1AX) serially passed through newbornnu/nu rats acquired the potency to grow in adultnu/nu rats. These results indicated that only some with additional changes but not all of the in vitro HTLV-1-immortalized cell lines possessed in vivo tumorigenicity. Using the syngeneic system, we further showed the inhibition of tumor development by transferring splenic T cells from immunized rats, suggesting the involvement of T cells in the regression of tumors. This novel and reproducible nude rat model of human ATL would be useful for investigation of leukemogenesis and antitumor immune responses in HTLV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document