scholarly journals Extensive Metabolic Correction of Hurler Disease By Hematopoietic Stem Cell-Based Gene Therapy: Preliminary Results from a Phase I/II Trial

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 607-607 ◽  
Author(s):  
Bernhard Gentner ◽  
Maria Ester Bernardo ◽  
Francesca Tucci ◽  
Erika Zonari ◽  
Francesca Fumagalli ◽  
...  

Allogeneic hematopoietic stem cell transplantation (HSCT) performed early in life is the current standard of care for patients with severe type 1 mucopolysaccharidosis (Hurler disease), a metabolic disorder caused by mutations in the alpha-L-iduronidase (IDUA) gene, leading to impaired breakdown of glycosaminoglycans (GAG). Secretion of IDUA by donor-derived hematopoietic cells may cross-correct non-hematopoietic cells, slowing progression of tissue damage and cognitive decline. Nevertheless, Hurler patients undergoing HSCT manifest substantial residual disease burden, e.g. on the skeleton and central nervous system (CNS). We conducted a phase I/II clinical study (NCT03488394) to test whether infusion of autologous CD34+ hematopoietic stem and progenitor cells (HSPC) transduced ex vivo with a lentiviral vector coding for the IDUA gene was feasible, safe and capable of restoring enzymatic activity in the patients' blood and tissues, up to supraphysiologic levels. The trial originally planned to enroll 6 Hurler patients with preserved neurocognitive function (DQ/IQ>70) that had no access to a suitable allogeneic donor. Sample size has recently been increased to 8 patients. By July 2019, six patients have been treated at a median age of 24 months (range: 14-34), with a median follow up of 4 months (range: 1-13). In all patients, we collected a high number of autologous HSPC by leukapheresis following mobilization with lenograstim and plerixafor, resulting in drug products with a median of 21 million CD34+ cells/kg (range: 13-29). Transduction efficiency was high with a median above 80% and a vector copy number (VCN) of 1.7 (range: 1.0-5.2), employing a shortened, 2 day transduction protocol that included prostaglandin E2. All patients showed rapid hematopoietic recovery following myeloablative conditioning with busulfan (targeted to an AUC of 80mg*h/L), fludarabine (160mg/sqm) and rituximab (375mg/sqm). Median duration of grade 4 neutropenia associated with conditioning was 15.5 days (range: 13-19). Also associated with conditioning, Grade 3 thrombocytopenia lasted 4 days, while only 2 out of 6 patients experienced a platelet drop below 20,000/mcL on a single day, in the absence of transfusion support. Adverse events were mild and compatible with myeloablative conditioning, with the exception of patient 3 who experienced an anaphylactic reaction on day+12, which promptly responded to antihistamines, IV fluids and steroids. All evaluable patients showed sustained, supraphysiologic blood IDUA activity (dried blood spot), which was on average 3 fold above the upper limit of normal (evaluable patients: n=5 at 1 month, n=4 at 2 months, n=3 at 3 months). Notably, in n=4 Hurler patients treated with allogeneic HSCT, we detected IDUA activity that ranged within the lowest quartile of normal in spite of full donor chimerism, suggesting substantial gain achieved by overexpressing IDUA in ex vivo genetically-modified autologous HSPC. Urinary GAG excretion fell to normal levels within 3-6 months. IDUA activity was also detected in the cerebrospinal fluid (CSF) of treated patients, accompanied by a logfold reduction in CSF GAGs in the 2 patients with longest follow up. This suggests that gene therapy accomplishes full metabolic correction of tissues, including the CNS. Gene therapy did not induce antibodies against the IDUA protein, while pre-existing antibodies induced by enzyme replacement therapy before gene therapy rapidly disappeared. Patient 1 who reached the 1-year follow-up demonstrated a stable cognitive score, improved findings on brain and spine MRI, resumed growth velocity and an improvement of his skeletal phenotype. The preliminary results from our phase I/II study compare favorably with the standard of care in terms of safety and efficacy, and highlight the potential of genetic engineering of HSPC grafts for therapeutic gain-of-function. Disclosures Gentner: Genenta Science: Consultancy, Equity Ownership, Research Funding. Parini:Shire: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Financial Support; BioMarin: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Financial Support; Ultragenyx: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Financial Support; SOBI: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Financial Support; Orphan Europe: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Financial Support; Sanofi-Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Financial Support. Naldini:San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), a joint venture between Fondazione Telethon and Ospedale San Raffaele (OSR): Other: Wiskott-Aldrich Syndrome (WAS) gene therapy was licensed to GlaxoSmithKline (GSK) in 2014. It was then licensed to Orchard Therapeutics (OTL) in April 2018. OTL is the current sponsor of the clinical trial.; Genenta Science: Consultancy, Equity Ownership; Magenta Therapeutics: Equity Ownership. Aiuti:San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), a joint venture between Fondazione Telethon and Ospedale San Raffaele (OSR): Other: Wiskott-Aldrich Syndrome (WAS) gene therapy was licensed to GlaxoSmithKline (GSK) in 2014. It was than licensed to Orchard Therapeutics (OTL) in April 2018. OTL is the current sponsor of the clinical trial.; San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), a joint venture between Fondazione Telethon and Ospedale San Raffaele (OSR): Other: Study PI.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1176-1176 ◽  
Author(s):  
Julie Kanter ◽  
Mark C. Walters ◽  
Matthew M. Hsieh ◽  
Lakshmanan Krishnamurti ◽  
Janet Kwiatkowski ◽  
...  

Abstract β-globin gene transfer into hematopoietic stem cells (HSCs) has the potential to reduce or eliminate the symptoms and long-term complications of severe sickle cell disease (SCD). LentiGlobin Drug Product (DP) is a gene therapy product containing autologous CD34+ cells transduced with the BB305 lentiviral vector. BB305 encodes a human β-globin gene containing a single point mutation (AT87Q) designed to confer anti-sickling properties similar to those observed in fetal hemoglobin (γ-globin). In two ongoing studies, subjects with transfusion-dependent β-thalassemia (Studies HGB-204 and HGB-205) or SCD (Study HGB-205) receiving LentiGlobin DP have demonstrated sustained expression of 3-9 g/dL therapeutic hemoglobin (HbAT87Q) and have shown marked improvements in clinical symptoms 1 year post-treatment. Study HGB-206 is a multi-center, Phase 1/2 safety and efficacy study of LentiGlobin DP in adults with severe SCD. We previously (ASH 2015) presented results from 2 subjects, who had 3 and 6 months of follow-up after LentiGlobin treatment. We now present data from 7 treated subjects, 4 of whom have ≥6 months of follow-up data. Subjects (≥18 years of age) with severe SCD (history of recurrent vaso-occlusive crisis [VOC], acute chest syndrome, stroke, or tricuspid regurgitant jet velocity of >2.5 m/s) were screened for eligibility. Following bone marrow harvest (BMH), CD34+ cells were transduced with the BB305 vector. Subjects underwent myeloablative conditioning with busulfan prior to infusion of the transduced cells. Safety assessments include adverse events (AEs), integration site analysis (ISA) and surveillance for replication competent lentivirus (RCL). After infusion, subjects are monitored for hematologic engraftment, vector copy number (VCN), HbAT87Q expression, and other laboratory and clinical parameters. As of July 2016, 7 subjects with severe SCD (median age: 26 years, range 18-42 years) have received LentiGlobin DP in this study. All subjects successfully underwent BMH, with a median of 2 harvests required (range 1-4). Fifteen Grade 3 AEs in 5 subjects were attributed to BMH: pain (n=10), anemia (n=3) and VOC (n=2); all resolved with standard measures. Table 1 summarizes cell harvest, DP characteristics, and lab results. The median LentiGlobin DP cell dose was 2.1x10e6 CD34+ cells/kg (range 1.6-5.1) and DP VCN was 0.6 (0.3-1.3) copies/diploid genome. Median post-infusion follow-up as of July 2016 is 7.1 months (3.7-12.7 months). All subjects successfully engrafted after receiving LentiGlobin DP, with a median time to neutrophil engraftment of 22 days (17-29 days). The toxicity profile observed from start of conditioning to latest follow-up was consistent with myeloablative conditioning with single-agent busulfan. To date, there have been no DP-related ≥Grade 3 AEs or serious AEs, and no evidence of clonal dominance or RCL. The BB305 vector remains detectable at low levels in the peripheral blood of all subjects infused, with median VCN 0.08 (0.05-0.13, n=7) at last measurement. All subjects express HbAT87Q, with a median of 0.4g/dL (0.1-1.0 g/dL, n=7) at 3 months; most subjects demonstrated modest increases over time, and the 2 subjects with the longest follow-up expressed 0.31 and 1.2 g/dL HbAT87Q at 9 months. All 4 subjects with ≥6 months of follow-up experienced multiple VOCs in the 2 years prior to study entry (2-27.5 VOCs annually). Since LentiGlobin DP infusion, 3 of these 4 subjects have had fewer VOCs, although this trend may be confounded by the short follow-up, the effects of transplant conditioning, and/or post-transplant RBC transfusions. The decrease in VCN between DP and peripheral cells contrasts with previous reports of successful LentiGlobin gene therapy in ongoing studies HGB-204 and HGB-205. The relatively low in vivo VCN in this study appears to result in the lower HbAT87Q expression seen to date. We are exploring multiple hypotheses as to the etiology of the VCN drop between DP and peripheral blood, including the adverse impact of sickle marrow pathology on HSCs, the adequacy of myeloablation, and the magnitude of the transduced cell dose. We will provide an update on study data and ongoing efforts to increase in vivo VCN in patients with SCD, such as increasing the transduced cell dose through alternate HSC procurement methods or enhancing the DP VCN through manufacturing improvements. Disclosures Kanter: Novartis: Consultancy. Walters:Bayer HealthCare: Honoraria; AllCells, Inc./LeukoLab: Other: Medical Director ; ViaCord Processing Laboratory: Other: Medical Director ; Leerink Partners, LLC: Consultancy; Kiadis Pharma: Honoraria; bluebirdBio, Inc: Honoraria. Kwiatkowski:Ionis pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Shire Pharmaceuticals: Consultancy; Sideris Pharmaceuticals: Consultancy; Apopharma: Research Funding; Luitpold Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. von Kalle:bluebird bio: Consultancy; GeneWerk: Equity Ownership. Kuypers:Children's Hospital Oakland Research Institute: Employment; bluebird bio: Consultancy. Leboulch:bluebird bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding. Joseney-Antoine:bluebird bio: Employment, Equity Ownership. Asmal:bluebird bio: Employment, Equity Ownership. Thompson:bluebird bio: Consultancy, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Amgen: Research Funding; Baxalta (now part of Shire): Research Funding; ApoPharma: Consultancy, Membership on an entity's Board of Directors or advisory committees; Mast: Research Funding; Eli Lily: Research Funding.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 495-495
Author(s):  
Jamie L Lahvic ◽  
Michelle B Ammerman ◽  
Pulin Li ◽  
Song Yang ◽  
Nan Chiang ◽  
...  

Abstract Small molecule treatment of hematopoietic stem cells ex vivo has the potential to expand these cells or increase their engraftability. Previously, we discovered that ex vivo treatment of marrow with 11,12-epoxyeicosatrienoic acid (EET) enhances the engraftment of hematopoietic stem and progenitor cells in both zebrafish and mammals. Additionally, EET treatment promotes specification of HSPC from the hemogenic endothelium, suggesting a broad pro-hematopoietic role of this molecule. Indeed, bioactive lipids play an important role as signaling molecules both during embryo development and adult tissue homeostasis. However, due to their small-molecule nature, identifying their receptors biochemically has been a long-standing challenge which impedes the understanding of the biological processes they regulate. The identity of the EET receptor remains unknown despite more than a decade of research. Here, we utilized a novel bioinformatic approach to identify candidate EET receptors and identified a candidate functional in cell culture, zebrafish and mouse assays. EET signaling is known to be G-protein dependent, suggesting its receptor is a G-protein coupled receptor (GPCR). We performed RNAseq on U937 monocytes, EaHy endothelial cells, and PC3M-LN4 prostate cancer cells, three human cell lines with clear EET-responsive phenotypes. These three cell lines expressed 37 GPCR in common at a basal level of greater than or equal to 0.3 fragments per kilobase per million reads (FPKM). 27 of these GPCR were also expressed in a non-EET-responsive cell line, HEK293, leaving only 10 candidate EET receptors. We screened 7 of these candidates for EET-responsiveness using a cell-culture based β-arrestin recruitment assay. Of these, only GPR132 exhibited EET-dependent recruitment of β-arrestin to the cell membrane, indicating GPCR activation. GPR132 was previously identified as a receptor for a variety of small oxygenated fatty acids, and we confirmed that these related molecules induce GPR132-dependent β-arrestin recruitment. We additionally treated developing zebrafish embryos with these molecules. Like EET, these GPR132 ligands increased HSPC numbers in the zebrafish aorta-gonad-mesonephros (AGM) and caused ectopic expression of the HSPC marker runx1 in the zebrafish tail, a phenotype that was previously seen only with EET treatment. To test the requirement of GPR132 for EET signaling, we knocked down the zebrafish ortholog of GPR132 by morpholino injection, which prevented the EET-induced increase of runx1in both the AGM and tail. Finally, we performed competitive whole bone marrow transplant using wildtype and GPR132-/- mice as donors and found that while treatment with EET increases engraftment of WT donor cells, no such improvement is seen in GPR132-/- cells. GPR132 is thus required in both zebrafish and mice for EET phenotypes. Combining bioinformatic, biochemical, and genetic approaches, we identified GPR132 as a receptor for EET involved in regulating hematopoiesis and marrow transplant. GPR132 thus represents a therapeutic target for the enhancement of hematopoietic stem cell transplant, and genetic manipulation of GPR132 could help illuminate the endogenous roles of its fatty acid ligands. Disclosures Zon: Fate, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Marauder Therapeutics: Equity Ownership, Other: Founder; Scholar Rock: Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Other: Founder.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 202-202 ◽  
Author(s):  
Marina Cavazzana ◽  
Jean-Antoine Ribeil ◽  
Emmanuel Payen ◽  
Felipe Suarez ◽  
Yves Beuzard ◽  
...  

Abstract Background: In patients with hemoglobinopathies, hematopoietic stem cell (HSC) gene therapy has the potential to induce production of functional β-globin in the red blood cell lineage with the aim of reducing or eliminating the symptoms of disease. Previous results from 1 subject with severe sickle cell disease (SCD; 6 months follow-up) and 2 subjects with β0/βE-thalassemia major (up to 15 months follow-up) treated in clinical study HGB-205 suggested that transplantation with autologous CD34+ cells transduced with the LentiGlobin BB305 lentiviral vector containing an engineered βA-T87Q-globin gene (LentiGlobin BB305 Drug Product) resulted in near-normal levels of total hemoglobin (Hb) and rapid clinical improvement. Here we provide data on a new subject enrolled and additional follow-up data on the 3 subjects previously presented in Study HGB-205. Subjects and Methods: Subjects with severe SCD underwent HSC collection via bone marrow harvest, while subjects with β-thalassemia major underwent HSC collection via peripheral blood apheresis following mobilization. CD34+ cells were selected and transduced with LentiGlobin BB305 lentiviral vector to produce the drug product. Subjects underwent myeloablation with intravenous busulfan, followed by infusion of drug product. Subjects were monitored for hematological engraftment, vector copy number, βA-T87Q-globin expression, adverse events and transfusion requirements. Integration site analysis (ISA) and replication-competent lentivirus (RCL) assays were performed. Prophylactic RBC transfusions were continued in subjects with SCD who were on chronic transfusion pre-transplant to maintain HbS <30%, followed by gradual taper over time. Results: As of 31 July 2015, 1 subject with severe SCD (Subject 1204, βS/βS with multiple vaso-occlusive crises, silent infarct, acute chest syndrome, and on prophylactic transfusions) and 3 subjects withβ-thalassemia major (Subjects 1201, 1202 and 1203) have been infused with the LentiGlobin BB305 Drug Product. The outcome of these subjects to date is shown in Table 1. No subject has experienced a drug product-related adverse event, and ISA analyses demonstrate highly polyclonal reconstitution without clonal dominance. The subject with severe SCD is producing approximately 51.5% of anti-sickling hemoglobin (48% HbAT87Q, 1.8% HbF, 1.7% HbA2) at 9 months post-infusion. This subject has not had a post-infusion hospitalization for a SCD-related event despite stopping chronic transfusions at Day +88. Both subjects with β0/βE-thalassemia major have remained transfusion-free for at least 15 months post-infusion, with a consistent expression of βA-T87Q-globin; the subject with β0/β0-thalassemia major has only had 1 month follow-up post-drug product infusion to date. Conclusion: The subject with severe SCD is producing approximately 51.5% anti-sickling globins with HbS of 48.5% and remains free of SCD-related events despite stopping chronic transfusion therapy. Two subjects with β0/βE-thalassemia major remain transfusion-free for at least 15 months post infusion of LentiGlobin BB305 Drug Product. Gene therapy using autologous HSC transduced with LentiGlobin BB305 lentiviral vector is a promising approach for the treatment of patients with hemoglobinopathies. Table 1. Demographics and Transplantation Outcomes Subject Age (years)/ Sex (M/F) Genotype BB305 Drug Product Day of Neutrophil Engraftment Drug Product- related Adverse Events Day of Last pRBC Transfusion Last Study Visit (Months) Hb at Last Visit (g/dL) VCNa CD34+ cell dose (x106 per kg) Subject with severe sickle cell disease HbAT87Q/HbF/ HbS/Total Hb 1204 13/ M βS/βS 1.2 / 1.0 5.6 Day +37 None Day +88 9M 5.5/0.2/5.5/11.4 Subjects with β-thalassemia major Hb AT87Q/ Total Hb 1201 18/ F β0/βE 1.5 8.9 Day +13 None Day +10 18M 7.8/10.7 1202 16/ M β0/βE 2.1 13.6 Day +15 None Day +12 15M 9.7/12.8 1203 19/ M β0/β0 0.8 8.8 Day +28 None Day +15 1M Pending/9.2 As of 31 July 2015 aVCN, vector copy number; F=female; M= Male for gender, and months for day of last follow-up Disclosures Payen: bluebrid bio: Consultancy. Beuzard:bluebird bio Inc: Consultancy, Equity Ownership. von Kalle:bluebird bio, Inc.: Consultancy. Sandler:bluebird bio, Inc.: Employment, Equity Ownership. Soni:bluebird bio, Inc.: Employment, Equity Ownership. De Montalembert:Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Leboulch:bluebird bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3544-3544 ◽  
Author(s):  
Angela R. Smith ◽  
Gary J. Schiller ◽  
Gregory M Vercellotti ◽  
Janet L. Kwiatkowski ◽  
Lakshmanan Krishnamurti ◽  
...  

Introduction: Persistently high fetal hemoglobin (HbF) expression can ameliorate severe transfusion-dependent beta thalassemia (TDT). BCL11A, a master regulator of the fetal-to-adult hemoglobin switch, is a rational gene-editing target in beta globinopathies. In pre-clinical studies with human hematopoietic stem cells (HSC), zinc finger nuclease (ZFN)-mediated disruption of the GATA-binding region of the intronic erythroid-specific enhancer (BCL11A ESE) increased endogenous HbF production in erythroid cells while allowing healthy, multi-lineage hematopoiesis. Though allogeneic hematopoietic stem cell transplantation (HSCT) can be curative in TDT, its application is partly limited by donor availability. Autologous transplantation using ex vivo gene-modified HSCs (HSCGT) can circumvent this, and lentiviral vector-mediated beta globin gene addition studies have shown efficacy in TDT. However, the long-term safety of random lentiviral genomic integration in HSCs is uncertain. ST-400 is an investigational cell therapy comprised of autologous CD34+ cells that have undergone high-precision, ZFN-mediated ex vivo editing at BCL11A ESE. The aim of this study is to induce HbF expression in edited erythroid cells. We hypothesized that HSCGT with ST-400 is safe and effective in TDT. Methods: The Thales trial (NCT03432364) is a Phase I/II study of the safety, tolerability and efficacy of ST-400 in adult patients with TDT, defined as undergoing ≥8 annual packed red blood cell transfusion episodes for at least 2 consecutive years before enrollment. After routine leukapheresis following mobilization with G-CSF and plerixafor, autologous collections are enriched for CD34+ cells and transfected with mRNA encoding ZFNs with binding sites flanking the GATA-binding region of BCL11A ESE. ST-400 product is infused following myeloablative busulfan conditioning. The trial will enroll 6 patients who are monitored for safety and efficacy for 3 years post-infusion. Results: Three patients have completed ST-400 manufacturing, and two have been infused. Patient 1 (β0/β0 genotype) received an ST-400 dose of 6.1 x 106 cells/kg. The patient experienced a serious adverse event (SAE) of hypersensitivity during ST-400 infusion considered to be related to the product cryoprotectant, DMSO, that resolved by the end of infusion. The patient had prompt hematopoietic reconstitution (ANC recovery day +14; platelet recovery day +24), with increasing HbF fraction that contributed to stable total hemoglobin. After being free from PRBC transfusions for 6 weeks, the patient has since required intermittent PRBC transfusions. At last follow-up, on-target DNA insertions-deletions (indels) at BCL11A ESE were present in peripheral blood mononuclear cells (PBMCs), and HbF levels remain elevated at 6 months post-infusion. Patient 2 (homozygous for the severe β+ IVS-I-5 G&gt;C mutation) received an ST-400 dose of 4.5 x 106 cells/kg. There was prompt hematopoietic reconstitution (ANC recovery day +15; platelet recovery day +29) with on-target indels detected in PBMCs at last follow-up, and rising HbF levels observed through 90 days post-infusion. Longer follow-up will be required to assess the clinical significance of these early results. Patient 3 (β0/β+ genotype including the severe IVS-II-654 C&gt;T mutation) has completed ST-400 manufacturing. Besides the SAE reported for Patient 1, no other SAEs related to ST-400 have been reported and other AEs have been consistent with myeloablation. No clonal hematopoiesis has been observed. Conclusions: ST-400 is an ex vivo, ZFN-edited autologous HSC product for increased erythroid HbF expression in TDT. Two infused patients had rapid hematopoietic reconstitution following myeloablative conditioning, and both have elevated HbF levels following HSCGT. These data are preliminary, and additional patients and longer follow-up will be required to understand the safety and efficacy of this therapy. Disclosures Smith: Amgen: Research Funding; Jazz Pharmaceuticals: Research Funding. Schiller:Agios: Research Funding, Speakers Bureau; Eli Lilly and Company: Research Funding; FujiFilm: Research Funding; Genzyme: Research Funding; Gilead: Research Funding; Incyte: Research Funding; J&J: Research Funding; Jazz Pharmaceuticals: Honoraria, Research Funding; Karyopharm: Research Funding; Novartis: Research Funding; Onconova: Research Funding; Pfizer Pharmaceuticals: Equity Ownership, Research Funding; Sangamo Therapeutics: Research Funding; Amgen: Other, Research Funding; Daiichi Sankyo: Research Funding; Constellation Pharmaceutical: Research Funding; Celgene: Research Funding, Speakers Bureau; Bristol Myer Squibb: Research Funding; Biomed Valley Discoveries: Research Funding; Astellas: Research Funding. Vercellotti:Mitobridge, an Astellas Company: Consultancy, Research Funding. Kwiatkowski:bluebird bio, Inc.: Consultancy, Research Funding; Agios: Consultancy; Terumo: Research Funding; Novartis: Research Funding; Apopharma: Research Funding; Imara: Consultancy; Celgene: Consultancy. Williams:bluebird bio: Patents & Royalties: License of certain IP relevant to hemoglobinopathies to bluebird bio. Potential for future royalty/milestone income., Research Funding; Orchard Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Co-founder, Patents & Royalties: Potential for future royalty/milestone income, X-SCID., Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees; Alerion Biosciences: Other: Co-founder. Miller:Sangamo Therapeutics: Employment, Equity Ownership. Woolfson:Sangamo Therapeutics: Employment, Equity Ownership. Walters:Editas Medicine: Consultancy; TruCode: Consultancy; AllCells, Inc: Consultancy. OffLabel Disclosure: busulfan: used for myeloablation prior to infusing the investigational autologous HSPC product (ST-400) plerixafor: used with G-CSF to enhance mobilization of autologous HSPC for collection via leukapheresis. Autologous HSPC then undergo ex vivo manufacturing to generate the investigational product (ST-400)


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1080-1080 ◽  
Author(s):  
Julie Kanter ◽  
John F. Tisdale ◽  
Janet L. Kwiatkowski ◽  
Lakshmanan Krishnamurti ◽  
Markus Y. Mapara ◽  
...  

Abstract Background Sickle cell disease (SCD) is a progressively debilitating genetic disease causing significant morbidity and early mortality for which a universal curative therapy is lacking. Expression of an anti-sickling β-globin via gene transfer into hematopoietic stem cells (HSCs) may reduce or eliminate SCD symptoms. LentiGlobin Drug Product (DP) contains autologous CD34+ cells transduced with the BB305 lentiviral vector (LVV) encoding β-globin with an anti-sickling substitution (T87Q). The safety and efficacy of LentiGlobin in adults with severe SCD is being evaluated in the ongoing multi-center Phase 1 study HGB-206 (NCT02140554). The first 7 patients (Group A) received DP from bone marrow harvested (BMH) HSCs and demonstrated stable but sub-optimal gene therapy-derived hemoglobin (HbAT87Q). The protocol was amended to include pre-harvest transfusions, increased target busulfan levels and a refined DP manufacturing process (Group B). The study is now enrolling patients in Group C, treated under modified protocol and including DP manufactured from plerixafor-mobilized HSCs. Data from patients in fully enrolled Groups A and B are shown here. Methods Patients ≥18 years old with severe SCD, as previously described, were enrolled. CD34+ cells from BMH were transduced with the BB305 LVV to produce LentiGlobin DP. Following myeloablative busulfan conditioning, patients were infused with DP. Group A patients received DP from the original manufacturing process. One Group B patient (1313) received DPs from a combination of original and refined manufacturing processes, while the other (1312) was entirely from the refined process. Adverse events (AEs), engraftment, vector copy number (VCN) in peripheral blood (PB), Hb fractions, and hemolysis markers were monitored. Results Nine patients (7 Group A, 2 Group B) with severe SCD (median age 26 [min - max: 18 - 42] years) were treated with LentiGlobin gene therapy. DP characteristics are shown in Table 1 and were improved in Group B patients, with higher VCNs, cell doses and % transduced cells compared to Group A. As of May 15, 2018, all Group A patients had completed ≥2 years follow-up and enrolled in a long-term follow-up study. Median follow-up was 24.2 (min - max: 22.8 - 32.9) months in Group A; 14.3 and 8.5 months for Group B patients 1313 and 1312. All patients engrafted. The toxicity profile was consistent with myeloablative conditioning. Serious AEs were reported in 8 patients; vaso-occlusive pain (n=5) was most common. No grade ≥3 DP-related AEs and importantly, no evidence of graft failure, veno-occlusive liver disease, replication competent lentivirus or clonal dominance were observed. All patients demonstrate stable PB VCN and HbAT87Q levels over prolonged follow-up. In Group A, PB VCN and HbAT87Q levels were modest, with a median of 0.1 c/dg and 0.8 g/dL at last visit, respectively (Table 1). Unsupported total Hb in 6/7 patients (1 patient is on transfusions) ranged from 7.1 - 11.4 g/dL. Total bilirubin and lactate dehydrogenase (LDH) at last visit vs. baseline decreased by a median of 46% (n=7) and 24% (n=6), respectively, while reticulocyte count increased by a median of 8% (n=7). With modest HbAT87Q production the annualized vaso-occlusive events (VOEs) rate decreased 17 - 100% compared to the 2-years pre-DP infusion (n=6; Figure 1). PB VCN and HbAT87Q in Group B patients were improved (Table 1). Total Hb at last visit was 11.0 g/dL in patient 1313 (29% HbAT87Q). In patient 1312, who received DP entirely from refined manufacturing, total Hb was 12.8 g/dL, with HbAT87Q contributing 56%. Total bilirubin and LDH normalized in both Group B patients, reticulocyte count decreased in patient 1312 (Table 1). Changes in VOE rates will be presented. Summary In the initial HGB-206 cohorts (Groups A and B), the safety profile of LentiGlobin gene therapy observed to date, is consistent with myeloablative busulfan conditioning. While HbAT87Q levels in Group A are sub-optimal, they are stable through ≥2 years of follow-up and most patients show a decrease in VOEs, suggesting that even modest HbAT87Q production may improve the clinical status of patients with SCD. Patients in Group B had improved DP characteristics, increased PB VCN and HbAT87Q levels with normalization of Hb in 1 patient and normalization of LDH and total bilirubin in both. Improvements in DP manufacturing correlate with increased levels of therapeutic HbAT87Q and could lead to significant clinical benefit. Disclosures Kanter: NHLBI: Membership on an entity's Board of Directors or advisory committees, Research Funding; Sancilio: Research Funding; Pfizer: Research Funding; ASH: Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Global Blood Therapeutics: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Apopharma: Research Funding; bluebird bio: Membership on an entity's Board of Directors or advisory committees, Research Funding. Kwiatkowski:bluebird bio: Consultancy, Honoraria, Research Funding; Agios Pharmaceuticals: Consultancy, Research Funding; Apopharma: Research Funding; Terumo: Research Funding; Novartis: Research Funding. Mapara:Incyte: Consultancy. Schmidt:German Cancer Research Center: Employment; bluebird bio: Consultancy; GeneWerk GmbH: Employment. Miller:bluebird bio: Employment, Equity Ownership. Pierciey:bluebird bio: Employment, Equity Ownership. Shi:bluebird bio: Employment, Equity Ownership. Ribeil:bluebird bio: Employment, Equity Ownership. Walters:bluebird bio: Research Funding; ViaCord Processing Lab: Other: Medical Director; AllCells Inc.: Other: Medical Director; Sangamo Therapeutics: Consultancy. Thompson:La Jolla Pharmaceutical: Research Funding; Biomarin: Research Funding; Novartis: Research Funding; Celgene: Research Funding; bluebird bio: Consultancy, Research Funding; Amgen: Research Funding; Baxalta/Shire: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1026-1026 ◽  
Author(s):  
John F. Tisdale ◽  
Julie Kanter ◽  
Markus Y. Mapara ◽  
Janet L. Kwiatkowski ◽  
Lakshmanan Krishnamurti ◽  
...  

Abstract Background β-globin gene transfer has the potential for substantial clinical benefit in patients with sickle cell disease (SCD). LentiGlobin Drug Product (DP) contains autologous CD34+ hematopoietic stem cells (HSCs) transduced with the BB305 lentiviral vector (LVV), encoding β-globin with an anti-sickling substitution (T87Q). The safety and efficacy of LentiGlobin gene therapy is being evaluated in the ongoing Phase 1 HGB-206 study (NCT02140554). Results in the initial 7 patients treated with LentiGlobin DP from steady state bone marrow harvested (BMH) HSCs using original DP manufacturing process (Group A) demonstrated stable HbAT87Q production in all patients, but at levels below the anticipated target. The protocol was thus amended to include pre-harvest RBC transfusions, optimize myeloablation by targeting higher busulfan levels, and use a refined DP manufacturing process (Group B); additionally, HSC collection by plerixafor mobilization/apheresis was instituted (Group C). Data from patients in Group C, treated under the modified protocol with DPs manufactured from plerixafor-mobilized HSCs using the refined process, are reported here. Results in patients in Groups A and B are reported separately. Methods Patients with severe SCD (history of recurrent vaso-occlusive crisis, acute chest syndrome, stroke, or tricuspid regurgitant jet velocity of >2.5 m/s) were enrolled. Patients in Group C received ≥2 months of transfusions to reach Hb of 10 - 12 g/dL and <30% HbS before HSC collection. Patients received 240 μg/kg of plerixafor 4 - 6 hours before HSCs were collected by apheresis and CD34+ cells were transduced with the BB305 LVV at a central facility. Following myeloablative conditioning with busulfan, the DP was infused, and patients were monitored for adverse events (AEs), engraftment, peripheral blood (PB) vector copy number (VCN), HbAT87Q expression, and HbS levels. Summary statistics are presented as median (min - max). Results As of 15 May 2018, 11 Group C patients (age 25 [18 - 35] years) had undergone mobilization/apheresis, 9 patients had DP manufactured (median 1 cycle of mobilization [1 - 3]) and 6 patients had been treated. Cell dose, DP VCN and % transduced cells in the 6 treated patients were: 7.1 (3 - 8) x 106 CD34+ cells/kg, 4.0 (2.8 - 5.6) copies/diploid genome (c/dg) and 81 (78 - 88) % transduced cells. The median follow-up was 3.0 (1.2 - 6.0) months. Patients achieved neutrophil engraftment at a median of 19 (18 - 20) days. Platelet engraftment was achieved at a median of 28 (12 - 64) days in 4 patients; platelet engraftment was pending in 2 patients. Two of 11 patients experienced 4 grade ≥3 AEs associated with plerixafor mobilization/HSC collection: 1 had vaso-occlusive pain and hypomagnesaemia, and the other had vaso-occlusive pain and non-cardiac chest pain. The toxicity profile from DP infusion to last follow-up in the 6 treated patients was consistent with myeloablative conditioning. Febrile neutropenia (n=5) and stomatitis (n=4) were the most common non-hematologic grade ≥3 AEs. Serious AEs were reported in 3 patients post-DP infusion: splenic hematoma, non-cardiac chest pain and mucosal inflammation. To date, there have been no DP-related AEs, graft failure, vector-mediated replication competent lentivirus, or clonal dominance. In the 6 treated patients, PB VCN at last visit ranged from 1.4 - 2.9 c/dg. In the 3 patients with 3 months follow-up, total Hb levels were 11.7 g/dL, 9.8 g/dL and 9.2 g/dL, and HbAT87Q levels were 4.7 g/dL, 3.2 g/dL and 3.5 g/dL. One additional patient with 6 months follow-up was off transfusions and had total Hb of 14.2 g/dL, of which 62% (8.8 g/dL) was vector-derived HbAT87Q and 36% (5.1 g/dL) was HbS. All 4 patients had HbAT87Q (median 39%) levels higher than or equal to HbS (median 31%) at the 3-month visit. Summary HGB-206 protocol changes and refined DP manufacturing have improved the LentiGlobin DP characteristics resulting in significantly improved outcomes. In addition, the HbAT87Q expression is comparable to, or exceeds, HbS levels as early as 3 months post DP infusion. These data support the feasibility of plerixafor-mediated CD34+ cell collection in patients with severe SCD and the efficacy of gene therapy. The safety profile of LentiGlobin gene therapy remains consistent with single-agent busulfan conditioning. Additional data and longer follow-up will determine the clinical effect of increased HbAT87Q/HbS ratios. Disclosures Kanter: Global Blood Therapeutics: Research Funding; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; bluebird bio: Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding; Sancilio: Research Funding; NHLBI: Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Apopharma: Research Funding; ASH: Membership on an entity's Board of Directors or advisory committees. Mapara:Incyte: Consultancy. Kwiatkowski:Novartis: Research Funding; bluebird bio: Consultancy, Honoraria, Research Funding; Apopharma: Research Funding; Terumo: Research Funding; Agios Pharmaceuticals: Consultancy, Research Funding. Schmidt:GeneWerk GmbH: Employment; German Cancer Research Center: Employment; bluebird bio: Consultancy. Miller:bluebird bio: Employment, Equity Ownership. Pierciey:bluebird bio: Employment, Equity Ownership. Shi:bluebird bio: Employment, Equity Ownership. Ribeil:bluebird bio: Employment, Equity Ownership. Asmal:bluebird bio: Employment, Equity Ownership. Thompson:Amgen: Research Funding; Celgene: Research Funding; Baxalta/Shire: Research Funding; bluebird bio: Consultancy, Research Funding; Novartis: Research Funding; Biomarin: Research Funding; La Jolla Pharmaceutical: Research Funding. Walters:Sangamo Therapeutics: Consultancy; bluebird bio: Research Funding; ViaCord Processing Lab: Other: Medical Director; AllCells Inc.: Other: Medical Director.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1175-1175 ◽  
Author(s):  
Alexis A. Thompson ◽  
Janet Kwiatkowski ◽  
John Rasko ◽  
Suradej Hongeng ◽  
Gary J. Schiller ◽  
...  

Abstract BACKGROUND Allogeneic hematopoietic stem cell (HSC) transplant is potentially curative for patients with β-thalassemia major or, as more broadly defined, transfusion dependent β-thalassemia (TDT). However, HSC transplant is generally restricted to younger patients with matched sibling donors. Gene therapy could provide a transformative treatment for a broader population of patients with TDT, including those who are older or lack an appropriate donor. HGB-204 is an international, multi-center Phase 1/2 clinical study investigating the safety and efficacy of LentiGlobin Drug Product (DP), a gene therapy product containing autologous HSCs transduced ex vivowith the BB305 lentiviral vector, in patients with TDT. We previously reported initial data in 13 treated patients with 0 to 19 months follow-up. Study enrollment is complete, and all 18 patients have undergone DP infusion. Here, we report new results on the study's full cohort of 18 patients, 14 of whom have ≥ 6 months of follow-up, including 1 who has completed the primary 24-month analysis period. METHODS Patients (12 to 35 years of age) with TDT were enrolled at participating sites in the U.S., Australia, and Thailand. HSC mobilization was accomplished with granulocyte colony stimulating factor (G-CSF) and plerixafor, and HSCs were harvested by apheresis. In a centralized manufacturing facility, CD34+-selected stem cells were transduced with the BB305 lentiviral vector, which encodes the human β-globin gene engineered to contain a single point mutation (AT87Q) and is regulated by the β-globin locus control region. Patients underwent myeloablation with intravenous busulfan, followed by infusion of transduced CD34+ cells (LentiGlobin DP). Patients were monitored for hematologic engraftment, vector copy number (VCN), hemoglobin AT87Q (HbAT87Q) expression, and transfusion requirements. Safety assessments including adverse clinical events (AEs), integration site analysis (ISA) and surveillance for replication competent lentivirus (RCL) were evaluated post-infusion. RESULTS Eighteen patients with TDT (β0/β0 [n=8], β0/βE [n=6], β0/β+ [n=1], β0/βx [n=1] and β+/β+ [n=2] genotypes) have received LentiGlobin DP. The median age of the 13 female and 5 male patients treated was 20 years (range: 12-35 years). The median DP VCN was 0.7 (range: 0.3-1.5 copies/diploid genome) and the median cell dose was 8.1 x 106 CD34+ cells/kg (range: 5.2-18.1 x 106 cells/kg). Patients engrafted with a median time of 18.5 days (range: 14-30 days) to neutrophil recovery. The toxicity profile observed was typical of myeloablative conditioning with single agent busulfan. There have been no ≥ Grade 3 DP-related AEs and no evidence of clonal dominance or RCL during a median follow-up of 14.4 months post-infusion (range: 3.7-27.0 months; cut-off date: 27 June 2016). To date, patients with at least 6 months of follow-up achieved a median HbAT87Q level of 4.7 g/dL at 6 months (range: 1.8-8.9 g/dL; n=14), with a median VCN in peripheral blood of 0.4 (range: 0.2−1.0; n=13). Of these, all patients with non-β0/β0 genotypes and ≥12 months of follow-up (n=5) have remained free of transfusions (median 19.4 months without transfusion; range: 15.3 to 24.0 months) with a median total Hb of 11.6g/dL (range: 9.0-11.9 g/dL) at the most recent follow-up visit. While patients with β0/β0genotypes and ≥12 months of follow-up (n=5) have continued to require transfusions, annual median transfusion volumes have decreased 60% (from median 171.9 ml/kg/year at baseline [range: 168.1-223.2ml/kg/year] to 67.8 ml/kg/year post-treatment [range: 14.8-123.7 ml/kg/year]). CONCLUSIONS In the largest TDT gene therapy trial to date, all patients have demonstrated therapeutic Hb expression without ≥ Grade 3 DP-related AEs. The levels of HbAT87Q in patients with at least 6 months of follow-up have exceeded the study primary endpoint (≥ 2g/dL) in 13/14 (93%) patients and are sustained in the 10 patients with ≥12 months of follow up. Compared to their baseline, all patients with β0/β0 genotypes have considerably reduced transfusion requirements. Notably, following a single infusion of LentiGlobin DP, patients with genotypes other than β0/β0 have discontinued transfusions and remain free of transfusions to date. These early results support the continued development of LentiGlobin DP as a treatment for TDT. Disclosures Thompson: Amgen: Research Funding; bluebird bio: Consultancy, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Research Funding; Mast: Research Funding; ApoPharma: Consultancy, Membership on an entity's Board of Directors or advisory committees; Eli Lily: Research Funding; Baxalta (now part of Shire): Research Funding. Kwiatkowski:Luitpold Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Apopharma: Research Funding; Ionis pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Sideris Pharmaceuticals: Consultancy; Shire Pharmaceuticals: Consultancy. Rasko:GSK: Honoraria; IMAGO BioSciences: Consultancy, Equity Ownership; Genea: Consultancy, Equity Ownership; Rarecyte: Consultancy, Equity Ownership; Australian government and philanthropic foundations: Research Funding; Cure The Future Foundation: Other: Voluntary non-executive Board Member; Royal College of Pathologists of Australasia Foundation: Other: Voluntary non-executive Board Member; Office of the Gene Technology Regulator (OGTR) Australian Government: Membership on an entity's Board of Directors or advisory committees. Schiller:Incyte Corporation: Research Funding. Ho:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees. von Kalle:bluebird bio: Consultancy; GeneWerk: Equity Ownership. Leboulch:bluebird bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Research Funding. Petrusich:bluebird bio: Employment, Equity Ownership. Asmal:bluebird bio: Employment, Equity Ownership. Walters:Kiadis Pharma: Honoraria; Bayer HealthCare: Honoraria; Leerink Partners, LLC: Consultancy; ViaCord Processing Laboratory: Other: Medical Director ; AllCells, Inc./LeukoLab: Other: Medical Director ; bluebirdBio, Inc: Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3358-3358 ◽  
Author(s):  
Elisa Magrin ◽  
Michaela Semeraro ◽  
Alessandra Magnani ◽  
Hervé Puy ◽  
Annarita Miccio ◽  
...  

Background LentiGlobin gene therapy contains autologous CD34+ hematopoietic stem cells (HSCs) transduced with the BB305 lentiviral vector (LVV), encoding human β-globin with a T87Q substitution. This substitution confers anti-sickling properties to the gene therapy-derived hemoglobin (HbAT87Q) and allows for its quantification in transduced HSCs. The proof of concept for LentiGlobin gene therapy in patients with transfusion-dependent β-thalassemia (TDT) and sickle cell disease (SCD) was established in the recently completed HGB-205 study (NCT02151526). Herein, we provide the safety and efficacy outcomes and long-term follow-up data for all 7 treated patients, 4 with TDT and 3 with SCD. Methods Patients 5−35 years old with TDT (≥ 100 mL/kg of packed red blood cells [pRBCs]/year) or severe SCD (e.g., ≥ 2 acute chest syndromes [ACS] or ≥ 2 vaso-occlusive crises in the preceding year or the year before regular transfusions) were enrolled. CD34+ HSCs were obtained by mobilization and apheresis in patients with TDT or by bone marrow harvest in patients with SCD. Following collection, cells were transduced with the BB305 LVV. Patients underwent busulfan myeloablative conditioning and were infused with transduced cells. Patients were monitored for engraftment, adverse events (AEs), HbAT87Q levels, and other hematologic and clinical parameters. After 2 years in HGB-205, patients transitioned into the long-term follow-up study, LTF-303 (NCT02633943). Summary statistics are shown as median (min-max). Results As of June 2019, patients with TDT (n=4) and SCD (n=3) had a median follow-up of 49.6 (40.5-60.6) and 28.5 (25.5-52.5) months, respectively. Table 1 shows patient and drug product characteristics and several key efficacy outcomes. All patients achieved HSC engraftment. LentiGlobin safety profile was consistent with busulfan myeloablative conditioning and, in case of SCD, with the underlying disease state. The most common non-hematologic Grade ≥ 3 AEs post-LentiGlobin gene therapy (≥ 2 patients) for patients with TDT were stomatitis (n=4) and increased aspartate aminotransferase (n=2), and for patients with SCD were ACS (n=2) and vaso-occlusive pain (n=2). In all 4 patients with TDT, total Hb and HbAT87Q levels remained generally stable up to 5 years post-LentiGlobin infusion. Three of 4 patients achieved transfusion independence (TI; defined as weighted average Hb ≥ 9g/dL without pRBC transfusions for ≥ 12 months), for an ongoing duration of 56.3 (38.2-57.6) months. Weighted average total Hb during TI was 11.4 (10.5-13.0) g/dL. One patient has been off transfusions for 37.5 months and had total Hb of 7.7 g/dL, which was below the ≥ 9 g/dL requirement to meet the protocol definition of TI. At last visit, HbAT87Q levels in these 4 patients ranged from 6.2-11.2 g/dL, which contributed 73.8-86.8% of the total Hb. The first patient treated with LentiGlobin for SCD experienced one vaso-occlusive pain episode, which developed at 30 months after LentiGlobin gene therapy following a case of acute gastroenteritis with fever and dehydration. The second SCD patient had 2 serious AEs (SAEs) of ACS approximately 6 and 8 months after LentiGlobin gene therapy. The patient resumed chronic pRBC transfusions and hydroxyurea treatment and subsequently experienced 2 SAEs of vaso-occlusive pain; no additional SAEs of vaso-occlusive pain or ACS were reported during the last 16 months of follow-up after LentiGlobin infusion. The third SCD patient had no episodes of vaso-occlusive pain or ACS during 25.5 months of follow-up post-LentiGlobin gene therapy as of the data cut-off. Two patients with SCD who have been off chronic pRBC transfusions, showed improvement in hemolysis markers post-LentiGlobin treatment and stabilization of HbAT87Q expression at approximately 6 months post-LentiGlobin infusion. Total Hb levels for patients with SCD at last visit were 13.0 g/dL (patient 1), 9.4 g/dL (patient 2), and 9.8 g/dL (patient 3), with corresponding HbAT87Q contributions of 47.9%, 7.9%, and 25.8%, respectively. Summary With up to 5 years of follow-up, treatment with LentiGlobin gene therapy was well tolerated and resulted in improvement in hematologic parameters and disease-related symptoms. Further results from the completed study will be presented. Disclosures Hermine: Celgene: Research Funding; Novartis: Research Funding; AB science: Consultancy, Equity Ownership, Honoraria, Research Funding. Brousse:bluebird bio, Inc: Consultancy; AddMedica: Consultancy. El Nemer:Hemanext: Other: Other. Bartolucci:Novartis: Membership on an entity's Board of Directors or advisory committees; AddMedica: Honoraria, Membership on an entity's Board of Directors or advisory committees; Global Blood Therapeutics: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Roche: Membership on an entity's Board of Directors or advisory committees; HEMANEXT: Membership on an entity's Board of Directors or advisory committees. Asmal:bluebird bio, Inc: Employment, Equity Ownership. Whitney:bluebird bio, Inc: Employment, Equity Ownership. Gayron:bluebird bio, Inc: Employment, Equity Ownership. Huang:bluebird bio, Inc.: Employment, Equity Ownership. de Montalembert:AddMedica: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; bluebird bio, Inc: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Ribeil:bluebird bio, Inc: Employment, Equity Ownership. Cavazzana:SmartImmune: Other: Founder.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4797-4797 ◽  
Author(s):  
Marina Cavazzana ◽  
Jean-Antoine Ribeil ◽  
Emmanuel Payen ◽  
Felipe Suarez ◽  
Yves Beuzard ◽  
...  

Abstract Background: In patients with β-thalassemia major, hematopoietic stem cell (HSC) gene therapy has the potential to induce production of β-globin, γ-globin or modified β-globin in the red blood cell lineage and reduce or stop the need for blood transfusions. We have previously presented early results for 2 subjects with β0/βE -thalassemia major that suggested that transplantation with autologous CD34+ cells transduced with a replication-defective, self-inactivating LentiGlobin BB305 lentiviral vector containing an engineered β-globin gene (βA-T87Q) resulted in near-normal levels of total hemoglobin (Hb) early after HSC infusion. Herein, we provide additional follow-up data on these two subjects. Subjects and Methods: After obtaining informed consent, subjects with β-thalassemia major underwent HSC collection via peripheral blood apheresis and CD34+ cells were selected. Estimation of the mean ex- vivo vector copy number (VCN) was obtained by quantitative PCR performed on pooled colony-forming progenitors. Subjects underwent myeloablation with intravenous busulfan, followed by infusion of transduced CD34+ cells. Subjects were monitored for hematological engraftment, βA-T87Q-globin expression (by high performance liquid chromatography) and transfusion requirements. Integration site analysis (ISA, by linear amplification-mediated PCR and high-throughput sequencing on nucleated cells) and replication-competent lentivirus (RCL) assays were performed. Results: As of 31 July 2014, two subjects with β0/βE thalassemia major (Subjects 1201 and 1202) have undergone infusion with drug product. The outcome of these two subjects to date is shown in Table 1. The initial safety profile is consistent with myeloablation, without serious adverse events or drug product-related adverse events. Both subjects remain transfusion independent. ISA analyses in both the subjects at 3 months shows polyclonal reconstitution. An additional 2 subjects have been enrolled in this study but have not yet undergone drug product infusion. Conclusion: In the first two subjects, early transfusion independence was achieved and has been maintained as of 31 July 2014. Further follow up data on these two subjects and additional data on subjects who have undergone drug product infusion in this study will be presented. Gene therapy using autologous HSC transduced with LentiGlobin BB305 lentiviral vector is a promising approach for the treatment of patients with β-thalassemia major. Abstract 4797. Table 1. Preliminary Results of Dosing Parameters and Transplantation Outcomes Subject Age (years) and gender Genotype BB305 Drug Product Day of Neutrophil Engraftment Drug Product-related Adverse Events Day of last pRBC transfusion Day of last follow up βA-T87Q-Hb at last follow-up visit /Total Hb (g/dL) VCNa CD34+ cell dose (x106 per kg) 1201 19 F β0/βE 1.5 8.9 Day +13 None Day +10 Day +180 7.2/10.2 1202 16 M β0/βE 2.1 13.6 Day +15 None Day +12 Day +90 6.8/11.0 As of 31 July 2014 a VCN, mean vector copy number Disclosures Payen: bluebird bio, Inc: Consultancy. Beuzard:bluebird bio, Inc: Consultancy, Equity Ownership. Sandler:bluebird bio, Inc: Employment, Equity Ownership. Soni:bluebird bio, Inc.: Employment, Equity Ownership. De Montalembert:Novartis : Speakers Bureau. Leboulch:bluebird bio: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3347-3347 ◽  
Author(s):  
Lindsey A. George ◽  
Spencer K. Sullivan ◽  
John E.J. Rasko ◽  
Adam Giermasz ◽  
Benjamin J. Samelson-Jones ◽  
...  

Background: Adeno-Associated Virus (AAV) based liver transduction has emerged as a potentially viable gene therapy approach for the treatment of hemophilia patients. Fidanacogene elaparvovec (previously SPK-9001) is a hepatotropic bioengineered AAV based vector that delivers a high activity factor IX (FIX) transgene driven by a liver specific promoter. The Phase 1/2a development consists of a dosing study where patients are followed for 52 weeks post vector infusion followed by a long-term follow-up study for an additional 5 years. Data on the first 10 patients were previously published and demonstrated safe and sustained expression of a high activity FIX protein with an associated decreased requirement for exogenous factor administration and markedly reduced annualized bleeding rate. Here we present data on 15 patients infused with fidanacogene elaparvovec with ≥ 1 year of follow-up, which represents the largest cohort of Hemophilia B (HB) patients treated with the same vector at the same dose. Methods: Fifteen (15) adult HB patients were infused with 5 x 1011 vg/kg of fidanacogene elaparvovec and followed for at least 1 year as part of the Phase 1/2a dosing study. FIX activity (FIX:C) levels were measured using a one-stage assay. Endpoints include: Safety and tolerability, steady-state activity calculated as the geometric mean of all observed FIX:C activity levels from week 12 through week 52; annualized bleeding rate (ABR) prior to and 52 weeks after vector infusion; T cell response to fidanacogene elaparvovec capsid and transgene monitored post-infusion using an interferon-γ enzyme-linked immunospot (ELISpot) assay. Results: Three of fifteen patients were treated with corticosteroids for elevations in hepatic transaminases of which 2 were positive for capsid reactive T cells by interferon-γ ELISpot. There were otherwise no treatment related adverse events. The mean post-infusion steady-state FIX:C was 22.9%±9.9% at 1 year post vector infusion as measured in a central laboratory by one-stage assay utilizing Actin-FSL. Mean ABR during the first 52 weeks following fidanacogene elaparvovec infusion was 0.4±1.1 compared to 8.9±14.0 in the 52 weeks preceding infusion (p<0.001). Twelve (12) out of 15 patients reported zero bleeds in the 52 weeks post-vector infusion. Five of 15 subjects infused factor for a total of 20 infusions. Additional follow-up data will be presented for all patients enrolled in the long-term follow-up study. Conclusions: Fidanacogene elaparvovec was well tolerated in 15 patients with no serious adverse events. Data for all patients at 52 weeks post-infusion demonstrated a marked reduction in bleeding frequency and exogenous FIX use. All hepatic transaminase elevations responded to treatment with corticosteroids. Collectively, to date, this represents the largest cohort of HB patients treated with the same AAV based gene therapy and at the lowest dose. Treatment has been efficacious for all patients with manageable immune responses when present. These data support progression to a pivotal Phase 3 study at the dose evaluated. Disclosures George: University of Pennyslvania: Employment; Avrobio: Membership on an entity's Board of Directors or advisory committees; Pfizer: Consultancy. Sullivan:Octapharma: Consultancy, Other: Advisory Board. Rasko:bluebird bio: Honoraria; Celgene: Honoraria; Novartis: Honoraria; FSHD Global Research Foundation: Membership on an entity's Board of Directors or advisory committees; Rarecyte: Consultancy, Equity Ownership; Gene Technology Technical Advisory, Australian Government: Other: Advisory committee; GSK: Honoraria; Takeda: Honoraria; Cynata: Honoraria; Genea: Equity Ownership; Cure The Future Foundation: Membership on an entity's Board of Directors or advisory committees; Gilead: Honoraria; Pfizer: Honoraria; Spark: Honoraria; Imago: Consultancy; Advisory Committee on Biologics, Australian Government: Other: Advisory Committee; NHMRC Mitochondrial Donation Expert Working Committee: Other: Advisory Committee; Australian Cancer Research Scientific Advisory Board: Membership on an entity's Board of Directors or advisory committees. Giermasz:Genentech/Roche: Consultancy, Other: Research, Speakers Bureau; uniQure: Consultancy, Other: Research; Bioverativ/Sanofi: Consultancy, Speakers Bureau; BioMarin: Consultancy, Other: Research; Sangamo: Other: Research. Samelson-Jones:The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania: Employment. Ducore:Bayer: Consultancy, Honoraria, Other: speaker (not bureau); Spark Therapeutics: Research Funding; Shire: Consultancy, Honoraria; Octapharma: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; HEMA Biologics: Consultancy, Honoraria; BioMarin: Research Funding; Bioverativ: Research Funding. Teitel:BioMarin: Consultancy; Bayer: Consultancy, Research Funding; Shire: Consultancy; Pfizer: Consultancy, Research Funding; Novo Nordisk: Consultancy; Octapharma: Consultancy; CSL Behring: Consultancy. McGuinn:Biogen: Research Funding; Roche/Genetech: Research Funding; Spark: Research Funding; Shire/Baxalta: Consultancy, Research Funding. Wright:Solid Biosciences: Consultancy; Yposkesi: Other: Senior Advisor, SAB; LogicBio Therapeutics: Other: Member, SAB; Memorial Sloan Kettering Cancer Center: Consultancy; Agilis Biotherapeutics: Consultancy; Axovant Sciences: Other: Chief Technology Officer, Gene Therapies; Akous Therapeutics: Consultancy; National Institutes of Health: Consultancy; Leland Stanford Junior University: Consultancy; Wright Biologics: Other; Sanofi Genzyme: Consultancy; Spark Therapeutics: Consultancy, Other: co-founder, Chief Technology Advisor/Officer, Member, SAB; Adrenas Therapeutics: Other: Member, SAB; Ambys Medicines: Consultancy; CEVEC Pharmaceuticl: Other: Member, SAB. Anguela:Spark Therapeutics: Employment, Equity Ownership, Patents & Royalties. High:Spark Therapeutics: Employment, Equity Ownership, Patents & Royalties. Rybin:Pfizer: Employment. Murphy:Pfizer Inc.: Employment. Rupon:Pfizer: Employment.


Sign in / Sign up

Export Citation Format

Share Document