scholarly journals Immune Repertoire Analysis of Multiple Myeloma Research Samples Using NGS Characterization of Multiple B Cell Receptors in a Single Reaction

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1881-1881
Author(s):  
Geoffrey Lowman ◽  
Landon Pastushok ◽  
Karen Mochoruk ◽  
Wayne Hill ◽  
Michelle Toro ◽  
...  

Abstract Introduction B cell repertoire analysis by next-generation sequencing (NGS) is at the forefront of leukemia and lymphoma research. Some advantages provided by NGS-based techniques include a lower limit-of-detection and simpler paths to standardization compared to other methods. Importantly, in research of post-germinal B cell disorders, such as multiple myeloma (MM), NGS methods allow for the study of clonal lineage based on somatic hypermuation patterns. Current targeted NGS assays require multiple libraries to survey each B cell receptor chain (IGH, IgK, IgL), and this fact is highlighted when initial clonality detection fails due to mutations under primer binding sites. This issue can be especially true in MM which has a high rate of SHM. To address these issues, we have developed an assay for B cell analysis, based on Ion AmpliSeq™ technology, which enables efficient detection of IGH, IgK, and IgL chain rearrangements in a single reaction. Methods The B cell pan-clonality panel (Oncomine™ BCR Pan-Clonality Assay) targets the framework 3 (FR3) portion of the variable gene and the joining gene region of heavy- and light-chain loci (IGH, IgK, IgL) for all alleles found within the IMGT database, enabling readout of the complementary-determining region 3 (CDR3) sequence of each immunoglobulin chain. To maximize sensitivity, we included primers to amplify IgK loci rearrangements involving Kappa deletion element and the constant region intron. To evaluate assay performance, we conducted reproducibility studies and clonality assessment using gDNA from a total of 45 MM research samples. All MM cases examined in this work were confirmed clonal previously by light chain restriction via flow cytometry or IHC/ISH in tissue sections - 16 of the 45 MM samples were identified as lambda light chain restricted. For comparison, a small cohort of 12 B-ALL samples were also included in the study. Sequencing and repertoire analyses were performed using the Ion GeneStudio S5 System and Ion Reporter 5.16 analysis software. Results Clonality assessment of MM clinical research samples show an 93% overall positive detection rate by an assay which combines the IGH, IgK, and IgL chains in a single reaction using published guidelines for clonality assignment. Thirty-four of 45 samples show positive detection of an IGH rearrangement, while 41 of 45 showed positive detection of at least one light chain receptor. In total, 42 of 45 samples were deemed clonal by the single tube assay based on detection for one or more receptor. Clonality results for this sample set are well correlated with orthogonal data from flow, IHC/ISH, or alternate NGS assays. A clonal lambda light chain was identified in 14 of 16 samples determined to be lambda restricted by flow cytometry. In two of the lambda restricted samples only a clonal lambda rearrangement was identified, showing the benefit of including primers targeting both the kappa and lambda light chains in a pan-clonality NGS assay. Both the MM and B-ALL cohorts were evaluated for biased IGHV gene usage. IGHV3-11 was observed in 5 of 45 MM and 5 of 12 B-ALL samples. IGHV4-34, typically linked to autoreactive antibodies and underrepresented in germinal center and memory B-cells, was nonetheless found in 5 of 45 MM samples surveyed. Estimates of somatic hypermutation rates were calculated using the BCR pan-clonality assay. Most MM samples, as expected, contained some somatic hypermutation with 6 of 45 samples showing greater than 10% mutation rates. Automated lineage analysis, based on somatic hypermuation signatures within each sample, identified 8 of 45 MM samples which contained 5 or more clones in the primary clonal lineage, with one case containing a lineage with 23 clones. Two MM samples showed no somatic hypermutation as measured using the FR3 primers contained in the BCR pan-clonality assay. These samples were also evaluated using an FR1-J targeted NGS assay, which confirmed relatively low mutation rates for these MM samples at 0.44% and 1.3%, respectively. Conclusions These results demonstrate the utility of a novel assay for combined repertoire analysis of B cell receptor heavy and light chains in a single library preparation reaction. We expect this assay to simplify laboratory workflows and including analysis tools such as automated somatic hypermutation rate calculation and clonal lineage identification may open new paths for research in lymphoid cell disorders. For research use only. Disclosures Lowman: Thermo Fisher Scientific: Current Employment. Toro: Thermo Fisher Scientific: Current Employment. Pickle: Thermo Fisher Scientific: Current Employment. Ostresh: Thermo Fisher Scientific: Current Employment. Sarda: Thermo Fisher Scientific: Current Employment. Yang: Thermo Fisher Scientific: Current Employment.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4002-4002
Author(s):  
Shrutii Sarda ◽  
Geoffrey Lowman ◽  
Michelle Toro ◽  
Loni Pickle ◽  
Timothy Looney ◽  
...  

Abstract Background T-cell and B-cell repertoire analysis is used in oncology research, to understand the etiology of complex disease phenotypes, for the identification of biomarkers predictive of disease burden, outcome, and response to treatment, and for research in diagnosis and recurrence monitoring. Key predictors include secondary and tertiary repertoire features not reported by existing sequencing software solutions. For example, due to ongoing somatic hypermutation in mature B-cell receptors, the underlying sequence of a given clone can accumulate base differences and appear as several distinct clones with smaller frequencies, thereby hampering the ability of analysis software to detect its presence as a single dominant clone with the highest frequency. This has particularly detrimental implications for research in disorders such as follicular lymphoma and may require clonal lineage analysis for proper mitigation. Therefore, to aid the downstream analytics of biomarker identification and the study of complex disease, we developed fully automated analysis solutions that directly compute and report several key features (clonal lineage, amongst several others described below) pertinent to this area of research. Results We developed the Oncomine™ TCR Beta-SR, TCR Gamma-SR, BCR IGH-SR and BCR IGKL-SR workflows on Ion Reporter™ to characterize T-cell (β, γ chains) and B-cell (heavy and light (κ, δ) chains) repertoires. These workflows generate output tables and visualizations for primary repertoire features such as detected clones (viz., unique rearrangements in the receptor DNA sequence), their frequencies, as well as their somatic hypermutation levels in the case of B-cells (Figure 1a & 1b) for clonality assessment and rare clone detection. The software also quantifies and reports several secondary and tertiary repertoire features in a sample, such as clonal diversity, evenness of the clonal population, and B-cell lineage groupings useful in identifying related sub-clones. It includes spectratyping format plots to simultaneously assess the above features as a function of v-gene usage and CDR3 length combinations (Figure 1c & 1d), thereby providing users a complete snapshot of the repertoire, and also the capability to quickly determine CDR3 lengths and V-gene usage of highly expanded or mutated clones. A separate CDR3 lengths histogram is included, as well as a heatmap that depicts the distributions/intensity of Variable-Joining gene combinations (Figure 1e & 1f). Furthermore, the TCR workflows also report (i) convergence frequencies (fraction of clones with different nucleotide sequences, but identical amino acid sequences), and (ii) haplotype grouping for an analyzed sample, based on V-gene allele genotyping and clustering (Figure 1g). In addition, the long read Oncomine™ BCR IGH-LR workflow uniquely reports the isotype class for every detected clone, and includes a visualization of total reads, clones and lineages in the sample represented by isotype (Figure 1h). Conclusion The Oncomine™ immune repertoire workflows for T-cell and B-cell receptor sequencing were designed to be of high utility in distinct areas of malignancy research, and we expect them to greatly simplify complex downstream analyses. The unique capabilities of the workflows to automatically report secondary and tertiary repertoire features such as (i) clonal lineages for improved dominant clone detection in blood cancers, (ii) TCR clone convergence for prediction of response to immune checkpoint inhibitors [1,2], (iii) TCR haplotype grouping for evaluation of risk factors for autoimmunity and immune-related adverse events [3], and (iv) isotype classification in BCRs for studying pan-cancer immune evasion mechanisms, demonstrate the clear advantages of using these automated workflows over other existing solutions. For research use only. References 1) Looney TJ et al. (2020) TCR Convergence in Individuals Treated With Immune Checkpoint Inhibition for Cancer. Front. Immunol. 10:2985. 2) Naidus et al. (2021) Early changes in the circulating T cells are associated with clinical outcomes after PD-L1 blockade by durvalumab in advanced NSCLC patients. Cancer Immunology, Immunotherapy 70:2095-2102 3) Looney TJ et al. (2019) Haplotype Analysis of the T-Cell Receptor Beta (TCRB) Locus by Long-amplicon TCRB Repertoire Sequencing. Journal of Immunotherapy and Precision Oncology. 2 (4): 137-143. Figure 1 Figure 1. Disclosures Sarda: Thermo Fisher Scientific: Current Employment. Lowman: Thermo Fisher Scientific: Current Employment. Toro: Thermo Fisher Scientific: Current Employment. Pickle: Thermo Fisher Scientific: Current Employment. Looney: Thermo Fisher Scientific: Ended employment in the past 24 months; Singular Genomics: Current Employment. Hyland: Thermo Fisher Scientific: Current Employment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ligal Aizik ◽  
Yael Dror ◽  
David Taussig ◽  
Adi Barzel ◽  
Yaron Carmi ◽  
...  

The role of B cells in the tumor microenvironment (TME) has largely been under investigated, and data regarding the antibody repertoire encoded by B cells in the TME and the adjacent lymphoid organs are scarce. Here, we utilized B cell receptor high-throughput sequencing (BCR-Seq) to profile the antibody repertoire signature of tumor-infiltrating lymphocyte B cells (TIL−Bs) in comparison to B cells from three anatomic compartments in a mouse model of triple-negative breast cancer. We found that TIL-Bs exhibit distinct antibody repertoire measures, including high clonal polarization and elevated somatic hypermutation rates, suggesting a local antigen-driven B-cell response. Importantly, TIL-Bs were highly mutated but non-class switched, suggesting that class-switch recombination may be inhibited in the TME. Tracing the distribution of TIL-B clones across various compartments indicated that they migrate to and from the TME. The data thus suggests that antibody repertoire signatures can serve as indicators for identifying tumor-reactive B cells.


Blood ◽  
2010 ◽  
Vol 116 (7) ◽  
pp. 1070-1078 ◽  
Author(s):  
Yu-Chang Wu ◽  
David Kipling ◽  
Hui Sun Leong ◽  
Victoria Martin ◽  
Alexander A. Ademokun ◽  
...  

Abstract B-cell receptor (BCR) diversity is achieved centrally by rearrangement of Variable, Diversity, and Joining genes, and peripherally by somatic hypermutation and class-switching of the rearranged genes. Peripheral B-cell populations are subject to both negative and positive selection events in the course of their development that have the potential to shape the BCR repertoire. The origin of IgM+IgD+CD27+ (IgM memory) cells is controversial. It has been suggested that they may be a prediversified, antigen-independent, population of cells or that they are a population of cells that develop in response to T-independent antigens. Most recently, it was suggested that the majority of IgM memory cells are directly related to switched memory cells and are early emigrants from the germinal center reaction. Advances in sequencing technology have enabled us to undertake large scale IGH repertoire analysis of transitional, naive, IgM memory and switched memory B-cell populations. We find that the memory B-cell repertoires differ from the transitional and naive repertoires, and that the IgM memory repertoire is distinct from that of class-switched memory. Thus we conclude that a large proportion of IgM memory cells develop in response to different stimuli than for class-switched memory cell development.


2021 ◽  
Author(s):  
Ligal Aizik ◽  
Yael Dror ◽  
David Taussig ◽  
Adi Barzel ◽  
Yaron Carmi ◽  
...  

The role of B cells in the tumor microenvironment (TME) has largely been under-investigated, and data regarding the antibody repertoire encoded by B cells in the TME and the adjacent lymphoid organs are scarce. Here, we utilized B cell receptor high-throughput sequencing (BCR-Seq) to profile the antibody repertoire signature of tumor-infiltrating lymphocyte B cells (TIL Bs) in comparison to B cells from three anatomic compartments in a mouse model of triple-negative breast cancer. We found that TIL-Bs exhibit distinct antibody repertoire measures, including high clonal polarization and elevated somatic hypermutation rates, suggesting a local antigen-driven B-cell response. Importantly, TIL-Bs were highly mutated but non-class switched, suggesting that class-switch recombination may be inhibited in the TME. Tracing the distribution of TIL-B clones across various compartments indicated that they migrate to and from the TME. The data thus suggests that antibody repertoire signatures can serve as indicators for identifying tumor-reactive B cells.


2012 ◽  
Vol 39 (6) ◽  
pp. 1130-1138 ◽  
Author(s):  
ARUMUGAM PALANICHAMY ◽  
KHALID MUHAMMAD ◽  
PETRA ROLL ◽  
STEFAN KLEINERT ◽  
THOMAS DÖRNER ◽  
...  

Objective.Transient B cell depletion by rituximab (RTX) has become a specific treatment of rheumatoid arthritis (RA). Although phenotypic repopulation kinetics of B cell subsets are well documented, precise molecular analyses of the reconstituting immunoglobulin (Ig) genes encoding the B cell receptor in RA are sparse.Methods.A total of 708 individual CD19+CD27+ (memory) and CD19+CD27– (naive) B cells from 2 patients with RA were analyzed at baseline and 7 months after RTX at B cell repopulation. Ig light chain variable kappa (Vκ) and lambda (Vλ) light chain gene rearrangements were amplified, sequenced, and analyzed with a focus on receptor revision.Results.The naive as well as the memory repertoire repopulated polyclonally with diverse use of variable light chain gene families and minigenes. During the reconstitution phase, B cells used significantly fewer Jκ distal Vκ genes (p = 0.0006), with a higher frequency of somatic hypermutation of rearrangements employing Jκ5 compared to baseline in memory B cells. The use of Vλ rearrangements in regenerating B cells was also biased toward use of Vλ genes of the proximal cassette. In general, reemerging CD27+ Ig light chain genes were substantially more highly mutated than before RTX therapy (p < 0.0001, baseline vs during reconstitution).Conclusion.Our data indicate that RTX therapy leads to generation of distinct Vκ/Jκ and Vλ/Jλ gene repertoires consistent with replenishment of antigen-experienced B cells by germinal centers. At baseline, the imprints of receptor revision appeared to be more striking, which indicates that receptor revision is active in patients with RA and can be reduced by RTX.


2021 ◽  
Vol 12 ◽  
Author(s):  
Han Sun ◽  
Hu-Qin Yang ◽  
Kan Zhai ◽  
Zhao-Hui Tong

B cells play vital roles in host defense against Pneumocystis infection. However, the features of the B cell receptor (BCR) repertoire in disease progression remain unclear. Here, we integrated single-cell RNA sequencing and single-cell BCR sequencing of immune cells from mouse lungs in an uninfected state and 1–4 weeks post-infection in order to illustrate the dynamic nature of B cell responses during Pneumocystis infection. We identified continuously increased plasma cells and an elevated ratio of (IgA + IgG) to (IgD + IgM) after infection. Moreover, Pneumocystis infection was associated with an increasing naïve B subset characterized by elevated expression of the transcription factor ATF3. The proportion of clonal expanded cells progressively increased, while BCR diversity decreased. Plasma cells exhibited higher levels of somatic hypermutation than naïve B cells. Biased usage of V(D)J genes was observed, and the usage frequency of IGHV9-3 rose. Overall, these results present a detailed atlas of B cell transcriptional changes and BCR repertoire features in the context of Pneumocystis infection, which provides valuable information for finding diagnostic biomarkers and developing potential immunotherapeutic targets.


2002 ◽  
Vol 32 (4) ◽  
pp. 1164-1174 ◽  
Author(s):  
Nurit Yachimovich ◽  
Gustavo Mostoslavsky ◽  
Yuval Yarkoni ◽  
Inna Verbovetski ◽  
Dan Eilat

10.4081/352 ◽  
2009 ◽  
Vol 1 (1) ◽  
Author(s):  
F. Forconi ◽  
T. Amato ◽  
E. Sozzi ◽  
E. Cencini ◽  
D. Raspadori ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document