Adults with Severe Sickle Cell Anaemia and Iron Overload Have a High Incidence of Osteopenia and Osteoporosis.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1684-1684 ◽  
Author(s):  
Farrukh T. Shah ◽  
Ratna Chatterjee ◽  
Matilda Owusu-Asante ◽  
John B. Porter

Abstract Background: There is very little published data on osteopenia or osteoporosis in patients with sickle cell disorders (SCD) with only occasional case reports that have noted osteopenia in individual SCD patients. It is known that individuals of Afro-Caribbean decent have on average higher BMD scores then age matched Caucasian controls. The causes for bone demineralisation in SCD may be multifactoral. Putative contributory mechanisms include; marrow expansion, bone infarction, delayed puberty from anaemia, low vitamin D, iron overload from blood transfusion, iron chelation therapy, and hypogonadism. Methods and Findings: 17 consecutive SCD patients who had previously been transfused or were currently on a transfusion programme underwent DEXA scanning using a Hologic QDR 4500A. Hypogonadism was assessed for in all patients as well as Vitamin D3, parathyroid hormone (PTH), serum ferritin and haemoglobin levels. 11 of the 17 patients had undergone MRI to assess liver iron. Of 10 females, 6 had osteopenia (Z >−1.0, n= 4) or osteoporosis ( Z >−2.0, n=2) in the spine compared to age matched caucasian controls (p=0.008). In contrast, only 4 had significant hip demineralisation; 2 patients had osteoporosis and 2 were osteopenic. All patients with hip osteopenia also had spinal osteopenia. Liver iron concentration was significantly higher in the osteopenic (9.4mg/g dry wt) than the non-osteopenic group (1.95mg/g dry wt) (p=0.01). Mean serum oestradiol levels were no different between the osteopenic (235 pmol/L) and the non osteopenic patients (287 pmol/L). No differences in ferritin, units of blood transfused, parathyroid hormone or vitamin D level were seen. Only 2 females had received iron chelation with deferrioxamine one of whom was osteopenic. Among 7 males, 2 had spinal osteopenia (mean Z score −1.4) (p= 0.05) but none had osteopenia of the hip. The liver iron was higher in the osteopenic males (mean 12.9 mg/g dry weight) than in the non osteopenic group (mean 2.32 mg/g/dry weight) (p <0.05). Serum ferritin was also higher in osteopenic patients (mean 3729ug/l) than the non-osteopenic group (mean 745ug/l) (p=0.008). No significant difference between the serum testosterone and units of blood transfused, parathyroid hormone or vitamin D level was seen. Only one of the patients had received iron chelation and he was not osteopenic. Among all patients together, there was no evidence on MRI of increased cardiac iron but there was evidence of hypogonadothrophic hypogonadism is 1 female, while the remainder were not hypogonadal. There was evidence of disturbance of the Calcium- Vitamin D- PTH axis in 2 patients (1 male,1 female) both of whom were osteopenic. Conclusion: Osteopenia is a surprisingly common in adult patients with sickle disorders; 47% of patients had osteopenia. Iron loading may be a relevant contributing factor as liver iron was significantly greater in osteopenic than non-osteopenic patients. Hypogonadism and iron chelation therapy can be reasonably excluded as contributory facors in most patients but should be monitored in all patients on transfusion programmes.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3183-3183
Author(s):  
Vassilis Ladis ◽  
Marouso Drossou ◽  
Dimitria Vini ◽  
Ersi Voskaridou ◽  
Miranda Athanasiou-Metaxa ◽  
...  

Abstract Abstract 3183 Background: The introduction of iron chelation treatment has led to a significant improvement in morbidity and overall survival in patients with transfusion-dependent anemias. Deferasirox is a once-daily, oral iron chelator approved for the treatment of transfusional iron overload in both adult and pediatric patients. The efficacy and safety of deferasirox in a variety of transfusion-dependent anemias has been established in numerous Phase II/III clinical trials. Since most patients with transfusion-dependent anemias require lifelong iron chelation therapy, there is a need to assess the long-term safety of deferasirox in both adult and pediatric patients. Aim: To assess the safety profile of deferasirox in patients with transfusional iron overload in a real-world clinical setting. To further investigate the safety profile of deferasirox in patients with congenital erythrocyte disorders and transfusional iron overload, with ferritin levels <4000 ng/ml and without severe cardiac siderosis. Methods: Between July 2009 and September 2010, 85 patients with transfusion-induced iron overload treated with deferasirox as per the approved product labeling were enrolled in the study. These data represent the 24-week planned interim analysis of a 12-month observational study on deferasirox safety profile in the treatment of pediatric and adult patients with transfusion-dependent anemias who were newly-treated with deferasirox. Safety was evaluated through the monitoring and recording of all adverse events and serious adverse events, as well as routine laboratory testing, including hematology, blood chemistry and hepatic function assessments. Results: The population had a median age of 37.6 years (range: 5.3–61.4) and a female to male ratio of 1.3. Beta-thalassemia (67.1%) was the most common transfusion-dependent anemia, followed by thalassemia intermedia requiring periodic transfusions (20.0%) and sickle cell anemia (12.9%). Mean baseline ferritin levels were 1502.1±870.5 (pediatric group: 1480.2±522.8 and adult group: 1503.6±891.4), while 53 out of the 85 patients (62.4%) had serum ferritin level above 1000 ng/ml. Mean baseline liver T2* value was 10.4±9.7 ms; 44.4% of patients demonstrated minimal liver iron deposition (MRI T2* > 6.3 ms), 51.4% had mild to moderate liver iron overload (T2* ≤ 6.3 ms), and 4.2% had severe liver iron overload (T2*<1.4 ms). 54 (63.5%) of patients analysed had been pre-treated with iron chelators and 31 (36.5%) were chelation-naïve. The initial average daily dose of deferasirox was 25.9±4.8 mg/kg, and 70.6% of patients had no dose modification during the 24-week follow-up period. A statistical significant decrease in median serum ferritin levels was observed by Week 24 (mean absolute change from baseline:-214.5 ng/mL; p=0.009) [Figure 1]. No statistically significant changes were observed in creatitine levels, creatinine clearance and transaminases by Week 24 [Figure 1]. 37 ADRs were reported by 17 patients (20%) over the 24-week period. Among the most frequently observed ADRs (>5%) were epigastralgia reported by 7.1% of patients (6/85) and loose stools/diarrhoea by 5.9% of patients (5/85). The majority of ADRs reported (nevents=25; 67.6%) were graded as mild in severity, while 21.6% (nevents=8) were graded as moderate and 10.8% (nevents=4) as severe. Most ADRs (nevents=31; 83.8%) resulted in full recovery by Week 24. The overall incidence of SADRs was as low as 1.2% (in particular one patient experienced severe epigastralgia and upper extremity pain which resulted in her withdrawal from the study after four months of treatment). The all-cause discontinuation rate was 9.4% (8/85), while only two patients (2.4%) discontinued the study therapy due to ADR; 1 patient due to increased transaminase levels and 1 patient due to the aforementioned SADR. Conclusions: These data highlight the safety profile of deferasirox in both adult and pediatric patients; the regular monitoring of serum ferritin levels as well as other iron-overload parameters and transfusion requirements play a major role in determining and optimizing the outcome of iron chelation therapy. Disclosures: Ladis: Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Drossou:Novartis Pharmaceuticals: Investigator participating in a trial sponsored by Novartis. Vini:Novartis Pharmaceuticals: Investigator participating in a trial sponsored by Novartis. Athanasiou-Metaxa:Novartis Hellas S.A.C.I.: Research Funding. Oikonomou:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Vlachaki:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Tigka:Novartis Hellas S.A.C.I.: Employment. Tzavelas:Novartis Hellas S.A.C.I.: Employment. Liakopoulou:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Adamopoulos:Novartis Hellas S.A.C.I.: Investigator participating in a trial sponsored by Novartis. Kattamis:Novartis Hellas S.A.C.I.: Honoraria, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2671-2671
Author(s):  
Ismael Shaukat ◽  
Faraz Khan ◽  
Andrew Eisenberger ◽  
Marcus Stevenson ◽  
Alice J. Cohen

Abstract Abstract 2671 Background: Red cell transfusions play an integral role in the treatment and prevention of serious complications related to sickle cell disease. It has been shown that in other hemoglobinopathies, such as β-Thalassemia, patients (pts) suffer from iron overload which can result in end organ damage. There is concern that heavily transfused sickle cell pts may also develop iron overload with consequent morbidity and mortality. While pediatric pts routinely receive blood transfusions and iron chelation therapy, adult pts often discontinue chronic transfusion programs and are transfused sporadically. These pts may not receive routine iron chelation therapy. Methods: A retrospective review of our sickle cell database from 1988–2010 which also included those pts who were not routinely followed at the comprehensive sickle cell clinic. Adult pts (>18 yrs of age) with serum ferritin (SF) levels >1000 ng/ml (criteria for iron overload in our institution) were identified and use of iron chelation was reviewed in this population. Clinical characteristics evaluated were age, type of sickle cell disease, frequency of transfusions (chronic vs. sporadic), total units transfused, use and type of chelation, as well as reasons for non-use of chelation therapy. Results: 65/170(38%) pts were identified with SF >1000. The mean age is 33 years (range 19–70). 38/65 (59%) have the SS phenotype, 25/65 (38%) have the Sβ phenotype and 2/65 (3%) have the SC phenotype. The mean SF is 3697 ng/ml (range 1012–14312). Of those pts considered to have iron overload, 28/65 (43%) were treated with iron chelation: 27/65 (42%) received deferasirox and 1/65 (2%) received deferoxamine. Of the untreated pts, 24/37 (65%) had no identifiable reason for lack of chelation therapy, 10/37 (27%) had renal dysfunction, 1/37(3%) had hepatic impairment. 16/65 (25%) were transfused chronically, while 49/65 (75 %) were transfused sporadically. Chronically transfused pts received a mean of 81 units throughout their lifetime, while sporadically transfused pts received 30 units (p=0.01). The mean SF for chronically transfused pts was 5891, while the mean SF for pts transfused sporadically was 2981 (p=0.01). Of pts transfused chronically, 11/16 (69%) were on chelation therapy. Of the pts receiving sporadic transfusions, only 16/49 (33%) were on iron chelation (p= 0.01). In all pts chronically transfused, the reason for non-use of chelation therapy was renal dysfunction. In sporadically transfused pts, 33/49 (51%) had no identifiable reason for lack of chelation therapy. Conclusion: SF levels are significantly lower in pts who are sporadically transfused, though levels are high. Adult pts receiving sporadic transfusions are not routinely receiving iron chelation therapy despite elevated SF. The need for chelation therapy in both sporadically and chronically transfused pts remains to be determined. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 10 ◽  
pp. e2018062 ◽  
Author(s):  
Vincenzo De Sanctis

Abstract. Introduction: Chronic blood transfusion is the mainstay of care for individuals with β-thalassemia major (BTM). However, it causes iron-overload that requires monitoring and management by long-term iron chelation therapy in order to prevent endocrinopathies and cardiomyopathies, that can be fatal. Hepatic R2 MRI method (FerriScan®) has been validated as the gold standard for evaluation and monitoring liver iron concentration (LIC) that reflects the total body iron-overload. Although adequate oral iron chelation therapy (OIC) is promising for the treatment of transfusional iron-overload, some patients are less compliant with it and others suffer from long-term effects of iron overload. Objective: The aim of our study was to evaluate the prevalence of endocrinopathies and liver dysfunction, in relation to LIC and serum ferritin level, in a selected group of adolescents and young adult BTM patients with severe hepatic iron overload (LIC from 15 to 43 mg Fe/g dry weight). Patients and Methods: Twenty-four selected BTM patients with severe LIC, due to transfusion-related iron-overload, followed at the Hematology Section, National Center for Cancer Care and Research, Hamad Medical Corporation of Doha (Qatar), from April 2015 to July 2017, were retrospectively evaluated. The prevalence of short stature, hypogonadism, hypothyroidism, hypoparathyroidism, impaired fasting glucose (IFG), diabetes, and adrenal insufficiency was defined and assessed according to the International Network of Clinicians for Endocrinopathies in Thalassemia (ICET) and American Diabetes Association criteria. Results: Patients have been transfused over the past 19.75 ± 8.05 years (ranging from 7 to 33 years). The most common transfusion frequency was every 3 weeks (70.8%).  At the time of LIC measurements, the mean age of patients was 21.75 ± 8.05 years, mean LIC was 32.05 ± 10.53 mg Fe/g dry weight (range: 15 to 43 mg Fe/g dry weight). Their mean serum ferritin level was 4,488.6 ± 2,779 µg/L. The overall prevalence of growth failure was 26.1% (6/23), IFG was 16.7% (4/24), sub-clinical hypothyroidism was 14.3% (3/21), hypogonadism was 14.3% (2/14), diabetes mellitus was 12.5% (3/24), and biochemical adrenal insufficiency was 6.7% (1/15). The prevalence of hepatitis C positivity was 20.8% (5/24). No case of clinical hypothyroidism, adrenal insufficiency or hypoparathyroidism was detected in this cohort of patients. The prevalence of IFG impaired fasting glucose was significantly higher in BTM patients with very high LIC (>30 mg Fe/g dry liver) versus those with lower LIC (p = 0.044). LIC was correlated significantly with serum ferritin levels (r = 0.512; p = 0.011), lactate dehydrogenase (r = 0.744; p = 0.022) and total bilirubin (r = 0.432; p = 0.035). Conclusions: A significant number of BTM patients, with high LIC and endocrine disorders, still exist despite the recent developments of new oral iron chelating agents. Therefore, physicians’ strategies shall optimize early identification of those patients in order to optimise their chelation therapy and to avoid iron-induced organ damage. We believe that further studies are needed to evaluate if serial measurements of quantitative LIC may predict the risk for endocrine complications. Until these data are available, we recommend a close monitoring of endocrine and other complications, according to the international guidelines.  


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3649-3649 ◽  
Author(s):  
Yoo-Hong Min ◽  
Hyeoung Joon Kim ◽  
Kyoo Hyung Lee ◽  
Sung-Soo Yoon ◽  
Jae Hoon Lee ◽  
...  

Abstract Transfusion-related iron overload and its consequences are emerging challenges in chronically transfused patients with myelodysplastic syndromes (MDS) or aplastic anemia (AA). Measurement of liver iron concentration (LIC) is used as a surrogate for total iron burden to guide chelation therapy in transfusion-dependent patients. Although deferasirox (Exjade®, ICL670) is an oral iron chelation agent that is now widely available for the treatment of transfusional hemosiderosis, the clinical data on its specific benefits of iron chelation, including reduction of LIC, in transfusion-related iron overload patients with MDS or AA has been limited. We have prospectively investigated the efficacy of deferasirox for iron chelation by serial measurement of serum ferritin level and LIC, which is measured in vivo using quantitative tissue proton transverse relaxation rates (R2) magnetic resonance imaging (MRI), in transfusional iron overload patients with MDS or AA. Here we report the interim analysis data. A total of 79 patients with de novo MDS (n = 29) or idiopathic AA (n = 50) showing serum ferritin level over 1,000ng/ml were enrolled from 23 institutes. All patients were regularly transfused and received a median of 30 red blood cells (RBC) units in the year prior to the start of the study. Among MDS cases, 3 (10.3%), 20 (69.0%), and 4 cases (13.8%) were categorized as IPSS low-risk, intermediate-1-risk, and intermediate-2-risk group, respectively. In AA cases, 34 (64%) were severe form. Mean value of serum ferritin level in enrolled patients was 4,417 ± 3,378 (4,788 ± 3,996 in MDS, 4,185 ± 2,962 in AA) ng/ml at the time of deferasirox initiation. LIC value was measured using quantitative R2 MRI and FerriScan (Resonance Health, Australia) analysis. Mean value of LIC was 23.9 ± 13.8 (26.1 ± 15.0 in MDS, 22.8 ± 13.2 in AA) mg Fe/g dry weight. Linear regression analysis indicated a close correlation between serum ferritin level and LIC (r=0.55, p<0.001). Deferasirox was given orally at a dose of 20 mg/kg/day for at least 6 months to all patients. If the serum ferritin falls below 500 ng/ml, treatment was withheld. A consistent decrease in the serum ferritin level was demonstrated during the first 6 months in vast majority of patients despite of continued transfusion (209.7 ± 159.9 ng/ml and 324.0 ± 289.4 ng/ml per month in MDS and AA, respectively). Over the study period, patients with MDS or AA received a mean of 3.7 and 2.7 units RBC per month, respectively. After 6 months of medication, a slower decrease in the serum ferritin level was observed in MDS patients. In 30 cases, one-year medication of deferasirox was completed. At the end of study (EOS), the serum ferritin levels were significantly decreased to 3,085 ± 2,150 ng/ml (64.4% of baseline level) and 2,913 ± 2,232 ng/ml (69.6% of baseline level, p<0.01) in MDS and AA, respectively. One-year follow-up R2 MRI could be evaluated in 24 cases, and LIC was significantly decreased to the level of 19.3 ± 13.6 mg Fe/g dry weight (67.4% of baseline value, p=0.01). Decrease in the level of LIC at EOS in MDS (64.3% of baseline) was comparable to that in AA cases (68.5% of baseline). The most common drug-related adverse events (AE) were gastrointestinal disturbances, non-progressive increase in serum creatinine, and skin rash. However, AE were transient and mild-to-moderate in severity. Deferasirox was discontinued in 28 (35.4%) cases because of death (7 in MDS and 6 in AA), patient refusal (11 cases), and decrease in the serum ferritin level below 500ng/ml (4 cases). All death was ascribed to disease-related causes including cytopenia in nine (11.4%) and disease progression in one (1.3%). This study clearly shows that deferasirox is effective in reducing LIC and serum ferritin level in transfusional iron overload patients with MDS or AA, even with ongoing transfusion requirement, and well tolerated. Careful assessment of patient’s transfusion requirement will be important in making dose adjustment according to purpose of iron chelation. Data from extension phase of this clinical trial may expand our knowledge about the beneficial effects of deferasirox on prolonging survival and improving quality of life in these patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2685-2685 ◽  
Author(s):  
Lap Shu Alan Chan ◽  
Rena Buckstein ◽  
Marciano D. Reis ◽  
Alden Chesney ◽  
Adam Lam ◽  
...  

Abstract Introduction: The biology of myelodysplastic syndrome (MDS) is poorly understood, and treatment options are limited. Thus, most MDS patients require chronic red blood cell transfusion, and many develop secondary iron overload. Although the pathophysiological consequences of iron overload to the heart, liver, and endocrine organs have been well characterized, its effects on haematopoiesis have not been studied. However, it has been observed that chelation therapy in iron-overloaded MDS patients may result in reduction of transfusion requirements, and recent studies have suggested a correlation between the use of iron chelation therapy and improvement in leukaemia-free survival in MDS. At the cellular level, iron toxicity is mediated in large part via the generation of reactive oxygen species (ROS). It has been shown in animal models that accumulation of ROS leads to senescence of haematopoietic stem cells, and that ROS cause DNA damage and promote the development of malignancy. These effects of ROS may be particularly important in MDS, in which haematopoiesis is already severely compromised and genetic instability is a striking feature. Hypothesis: We hypothesize that iron overload secondary to transfusion leads to increased levels of intracellular ROS in early haematopoeitic cells in MDS. The increase in intracellular ROS in MDS would be predicted to lead further impairment of haematopoiesis via stem cell exhaustion and while promoting accumulation of DNA damage by myelodysplastic stem cells and early progenitors, thus accelerating progression of MDS to acute leukaemia. Results: To test this hypothesis, we examined the relationship between transfusion-related iron overload and ROS content of CD34+ bone marrow cells in MDS. ROS content was measured in CD34+ cells by flow cytometry in bone marrow aspirates from 34 consecutive MDS patients (CMML=4, MDS/MPD=2, RA=4, RARS=3, RCMD=2, RAEB 1=6, RAEB 2=12, RAEB-t/AML=1). The patients represented a wide range of prior transfusion burden (0-&gt;300 units PRBC) and serum ferritin levels (11-&gt;10000 μg/L). ROS was strongly correlated with serum ferritin concentration for patients with iron overload (serum ferritin &gt;1000 μg/L; n=14, R=0.733, p&lt;0.005). The correlation between ROS and ferritin level was even stronger in the subset of patients with RAEB 1 or RAEB 2 and iron overload (n=11, R=0.838, p&lt;0.005). In contrast, no correlation between ROS and ferritin level was demonstrated for patients with serum ferritin &lt;1000 μg/L (n=20). Importantly, iron chelation therapy was associated with a reduction in CD34+ cell ROS content in one patient. To assess the effect of iron overload on normal stem cell and progenitor function, we established a mouse model of subacute bone marrow iron overload. B6D2F1 mice were loaded with iron dextran by intraperitoneal injection (150mg total iron load over 21 days), and sacrificed three days after the end of iron loading. Iron staining of tissue sections confirmed iron deposition in the bone marrow, liver, and myocardium. The development of splenomegaly was noted in iron-loaded animals. Flow cytometric analysis revealed increased apoptosis of bone marrow cells in iron loaded mice based on annexin V+/7 AAD-staining (6.26±0.96% versus 3.54±0.99% for control mice, paired student’s t-Test p&lt;0.005). However, ROS content in CD117+ progenitors of iron loaded mice was similar to control mice. Thus, subacute iron loading in mice increases apoptosis but does not alter the ROS content of HSCs; we postulate that chronic iron overload is required to achieve this effect. Conclusions: These results establish a relationship between CD34+ cell ROS content and serum ferritin concentration in MDS patients with iron overload, and indicate that iron chelation therapy in this patient population reverses this ROS accumulation. The physiological consequences of this relationship are currently being investigated in this patient set by haematopoietic colony assays and assessment of DNA damage in CD34+ cells. Nonethelesss, these data may have key implications for the deployment of iron chelation therapy in MDS patients, and may explain the association between the use of iron chelation and improved leukaemia-free survival in MDS.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1517-1517
Author(s):  
Ersi Voskaridou ◽  
Eleni Plata ◽  
Panagiota Stefanitsi ◽  
Marousa Douskou ◽  
Dimitrios Christoulas ◽  
...  

Abstract Abstract 1517 Poster Board I-540 Iron overload was not thought to be an important issue in sickle cell disease (SCD) in the past because of the short life-span of SCD patients. However, the increase in longevity during the recent years has been associated with clinical evidence of iron overload in some SCD patients due to accumulation of transfusional iron, increased absorption associated with intensive erythropoiesis and iron deposition as a result of continuous hemolysis. Therefore, iron overload may play an important role in the severity of SCD and iron chelation has a definite indication in several SCD cases. Thalassemia intermedia (TI) encompasses a wide clinical spectrum of beta-thalassemia phenotypes. Iron overload is alsofrequently present in TI patients as a result of increased intestinal iron absorption secondary to chronic anemia and to sporadic blood transfusion therapy, which may be administered intermittently when hemoglobin (Hb) levels fall <7 g/dL. Thus, a variable rate of iron loading, reaching toxic levels in some patients, was seen in a series of intermittently transfused TI patients who need adequate chelation therapy. Deferasirox (Exjade®) is a once-daily orally administered iron chelator approved for the treatment of transfusional iron overload in patients with transfusion-dependent anemia. Here, we report on the efficacy and safety of deferasirox in iron-overloaded patients with SCD and TI. We evaluated 18 adult patients with SCD (8M/10F; mean age 41.3 ± 8.5 years) and 11 with TI (5M/6F; mean age 41.2 ± 6.5 years) who had serum ferritin levels >1000 ng/mL and who were sporadically transfused with <20 units of red blood cells before starting deferasirox treatment for up to 12 months. Twenty-four patients (15 with SCD and 9 with TI) and 5 (3 with SCD and 2 with TI) patients were initially treated with deferasirox at 10 and 20 mg/kg/day, respectively, based on the number of blood transfusions received before the initiation of treatment. After 3 months, dose adjustments (increases) were allowed in increments of 5 mg/kg/day every 3 months as required to reduce markers of iron overload. Total iron burden was monitored by measuring serum ferritin levels before and monthly after starting deferasirox, while liver iron concentration and cardiac iron burden were measured by magnetic resonance imaging (MRI) T2 and T2* parameters at baseline and 12 months after deferasirox treatment. Left ventricular ejection fraction (LVEF) by MRI, and 24-hour proteinurea (Prot 24h) before and after treatment, were also measured. Hb levels, serum creatinine, cystatin-C (a sensitive marker of renal impairment), alanine (ALT) and aspartate aminotransferase (AST) were measured before and every month during deferasirox treatment. Serum ferritin level was significantly reduced after 12 months of deferasirox treatment in both SCD (mean±SD: from 1993±997 ng/ml to 1106±1016 ng/ml, p<0.001) and TI patients (from 2030±1040 ng/ml to 1165±684 ng/ml, p=0.02). Similarly baseline liver T2 and T2* significantly increased following 12 months of therapy in SCD (from 21.1±5.7 ms to 27.4±8.0 ms, p=0.001 and from 4.1±3.8 ms to 6.0±3.4 ms, p=0.013, for T2 and T2* respectively) and TI patients (from 20.1±4.1 ms to 23.7±6.2 ms, p=0.01 and from 3.4±3.0 ms to 4.4±3.0 ms, p=0.02, for T2 and T2* respectively). Mean cardiac T2* and LVEF were normal at baseline and did not significantly change after 12 months of treatment in SCD and TI patients. There were also no significant changes in mean serum creatinine, Hb or Prot 24h levels after 12 months of deferasirox treatment, while mean ALT and AST levels significantly decreased over 12 months in both groups of patients (p<0.02 and p<0.04 for SCD and TI, respectively). In terms of cystatin-C, there was a significant increase after 12 months of treatment in SCD patients (from 0.97±0.32 mg/l to 1.12±0.4 mg/l, p<0.001) but not in TI patients, in whom the increase was of borderline significance (from 0.98±0.23 mg/l to 1.13±0.27 mg/l, p=0.094). These data indicate that, over 12 months, deferasirox significantly reduced liver iron burden and serum ferritin levels in these iron-overloaded patients with SCD and TI. The decreases in ALT and AST are suggestive of an improvement in liver function, while there must be some caution for renal impairment, mainly in SCD. This study indicates that deferasirox provides effective iron chelation therapy in these patients without any significant adverse effects. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 5165-5165
Author(s):  
Christian Junghanss ◽  
Rudolf Schlag ◽  
Bernd Gaede ◽  
Matthias Moelle ◽  
Steffen Doerfel ◽  
...  

Abstract Abstract 5165 Background: Progressive anaemia is highly prevalent amongst many malignant diseases leading to RBC transfusion-dependency. Therefore transfusion-related iron overload (IOL) is common in these patients (pts) and can result in multiple organ failure. Iron chelation therapy prevents organ failure, reduces the risk of infections and can improve hematopoesis in some diseases. The once-daily oral iron chelator deferasirox has been shown to reduce iron overload in pts with various transfusion-dependent anaemias assessed by serum ferritin (SF). Despite extensive knowledge of iron chelation in MDS or beta-thalassemia pts, data in pts with other anaemias is limited. Here, we present data from a subgroup of transfusion-related IOL pts that were included two non-interventional studies (EXTEND, EXJANGE) performed in Germany and who suffered from diseases other than MDS or beta thalassemia. Methods: 130 pts with various malignant diseases such as myeloproliferative disorders (43 pts, including 31 pts particular specified as myelofibrosis), acute myeloid leukaemia (14 pts), sickle cell anaemia (6 pts), aplastic anaemia (11), congenital aplastic anaemia (5) or Non-Hodgkin's lymphoma (6 pts) were treated with deferasirox in the daily-routine setting of office-based physicians and included in either the EXTEND or EXJANGE study. Patient with MDS or beta-thalassemia were also included in the studies, but are excluded from this analysis. Analysis is based on 1-year pooled data of these two, multicenter, non-interventional observational studies. Transfusion-dependent pts with IOL with or without prior chelation were enrolled and received the iron chelator deferasirox. Prescription of deferasirox, just as inclusion and exclusion criteria was in accordance with the terms of Exjade marketing authorization in the EU. Efficacy and safety parameters, including serum ferritin and adverse events (AEs), were collected in 2-monthly intervals. Results: 98 pts had no prior chelation therapy (51 M, 45 F, 2 missing; mean age 63.3, range 3.2–91.9 yrs) and a median baseline SF of 2,968 (range 561–11, 423) ng/mL. 32 pts had prior received prior chelation therapy (mainly with desferal; 17 M, 15 F; mean age 50.1, range 3.5–80.9 yrs) and a median baseline SF of 2,635 (range 539–19, 540) ng/mL. The mean number of prior red blood cell transfusions was 55. The mean prescribed daily dose of deferasirox at the first visit was 16.3 mg/kg/d rising up to 18.1 mg/kg/d after 12 months. During treatment, median SF levels clearly decreased from first to final visit [-806 ng/mL; p<0.0001 (explorative analysis)] in the chelation-naïve and also in the pre-chelated population [-300 ng/ml; p = 0.1705 (explorative analysis)]. The median observation period and days on therapy was 349 and 343 days, respectively. At final visit 74 pts (56.9%) were still on deferasirox therapy. Reasons for discontinuation by the final visit included 19 AEs (35.2%). 45 pts (34.6%) experienced an investigator assessed drug-related AE. The most common drug-related AEs were diarrhea (n=17; 37.8%), nausea (n=11; 24.4%) and blood creatinine increased (n=6; 13.3%). As in previous clinical trials, serum creatinine clearances showed a minor decrease over the study period (median decrease until final visit: 4 ml/min). Conclusion: Our analysis confirmed that deferasirox is effective and well tolerated in chelation-naïve as well as in previously chelated pts with transfusion-related IOL and diseases other than MDS or beta thalassemia. As baseline serum ferritin values were >2,500 ng/mL even in pts with prior chelation therapy, adequate chelation treatment should be considered earlier at a serum ferritin >1,000 ng/mL in pts with transfusion-dependent IOL for adequate iron chelation therapy. Disclosures: Junghanss: Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Haus:Novartis Pharma: Employment. Junkes:Novartis: Employment. Leismann:Novartis: Employment.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4558-4558
Author(s):  
Lisette Del Corso ◽  
Elisa Molinari ◽  
Andrea Bellodi ◽  
Riccardo Ghio ◽  
Andrea Bacigalupo ◽  
...  

Abstract BACKGROUND: Iron overload from chronic transfusion therapy can be extremely toxic and most patients (pts) do not receive adequate iron chelation therapy (ICT) despite evidence of transfusional iron overload (IOL). Deferasirox (DFX) is the principal option currently available for ICT in the management of IOL due to transfusion dependent anemia, such as in MDS pts. The most common adverse events (AEs) are gastrointestinal disorders, skin rash, elevations in liver enzymes levels and non-progressive transient increases in serum creatinine also in MDS pts, most of whom are elderly with significant comorbidities and side effects of other concomitant therapies. In order to achieve effective ICT with minimal toxicity in individual pts, regular monitoring to assess IOL and adverse effects of DFX treatment is essential. METHODS: The safety and efficacy of DFX were examined in a retrospective multicenter observational study of transfusion-dependent (TD) MDS pts with International Prognostic Scoring System (IPSS) low-or Int-1-risk. We included all pts treated with DFX up to 12 months, divided into two groups; the first one (group A) not under a multidisciplinary assessment, including pts not adequately treated, in terms of dosing and discontinuation of ICT and the second one (group B) with pts under multidisciplinary control. The DFX starting dosing was 10 mg/kg/die in all pts. The aim of our retrospective analysis was to assess the effectiveness of ICT in relation of dosing and right management of AEs. RESULT: We evaluated 45 MDS pts (12F/33M); 27 belonging to the group A and 18 to group B. The age was 74.2±8.8 and 77.3±4.8 respectively. The ECOG 0-1 was 85,1% in group A and 88,9% in group B. The transfusion episodes prior starting DFX were22.1±12.1 and 24.5±35.4 in the first and in the second group, respectively. The serum ferritin level at baseline was respectively 1285.1±489.6 ng/mL and 1452.6±748.1 ng/mL. The mean serum ferritin level increased from 1285.1+489.6 ng/mL to 1412.1+842.8 ng/mL in group A while decreased from 1452.6+748.1 ng/mL to 1166.1+ 723.4 ng/mL in group B. The rate of inadequate therapy, in terms of dosing and/or discontinuation ICT, was 85% in group A compared to 60% in group B (p= 0.086).The rate of severe SAE observed in all pts was 10%.The most common AEs were diarrhea, nausea, upper abdominal pain, serum creatinine increase. The positive hematological response rate was observed in 15% of all pts. CONCLUSIONS: The study showed that group B obtained advantage in terms of efficacy and toxicity. The difference between the two groups derived from the ability to manage comorbidities, concomitant therapies and AEs, in particular the rise in serum creatinine, the most common cause DFX discontinuation or dosing reduction. In this setting, the most important specialist was the nephrologist. In our multidisciplinary group experts in management of ICT were hematologist, internist, immune-hematologist and nephrologist. We shared how we monitored kidney function and managed a possible nephrotoxicity (table.2), in order to ensure DFX efficacy. Positive hematological responses were observed, and a subset of pts achieved transfusion independence. The timing of future multidisciplinary evaluation is set on 24 and 36 months, time in which we expect the best response to DFX therapy. Table 1. Ferritin trend group A (n27) group B (n18) Ferritin N mean±SD Median (range) N mean±SD Median (range) Baseline 27 1285.1±489.6 1134 (388-2099) 18 1452.6±748.1 1515 (160-3018) 3 months 22 1451.5±720.5 1247.5 (529-2791) 13 1312.7±909.8 1064 (521-3859) 6 months 23 1850.5±1079.1 1419 (374-4185) 11 1168.4±648.4 1300 (160-2409) 12 months 17 1412.1±842.8 1372 (111-3127) 9 1166.1±723.4 930 (277-2536) Table 2. Management of renal changes during therapy with DFX Creatinine and urine examination:1) in two successive determinations prior to initiation of therapy, then every month 2) in pts with other risk factors for kidney disease, every week for 1 month after start of DFX or dose increase and, subsequently, every month Changes in creatinine:1) increased by 33% in two successive determinations: reduce DFX dose of 5 mg/kg 2) progressive increase of creatinine: interrupt DFX and then re-challenge it at a lower dose with gradual increase if the clinical benefits outweigh the risks Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2696-2696 ◽  
Author(s):  
E. Angelucci ◽  
B. Turlin ◽  
D. Canatan ◽  
A. Mangiagli ◽  
V. De Sanctis ◽  
...  

Abstract Introduction: Although the direct measurement of iron from a liver biopsy is the reference standard method to determine liver iron concentration (LIC), results are highly unreliable in patients with advanced fibrosis and cirrhosis. As a result, chelation therapy is difficult to monitor in this patient population where effective chelation therapy may be critical. It is therefore important to assess parameters additional to LIC in order to accurately assess body iron in these patients. Aim: To analyze the efficacy of chelation with deferoxamine (DFO) and the investigational once-daily, oral iron chelator deferasirox (DSX) in patients with advanced fibrosis participating in DSX registration studies. Methods: A subgroup of patients from DSX Studies 0107 and 0108 were selected based on a staging result according to the Ischak scale of 5 (incomplete cirrhosis) or 6 (probable or definite cirrhosis), measured either at baseline or after 1 year of chelation therapy. The subgroup of patients with β-thalassemia participating in Study 0107 received DSX (n=26) or DFO (n=30). In Study 0108, the subgroup of patients with β-thalassemia unable to be treated with DFO (n=12) or patients with anemias other than β-thalassemia (n=7) were treated with DSX only. In both studies, patients received chelation therapy according to baseline LIC. Results: In Study 0107, treatment with DSX or DFO led to a decrease in semi-quantitative tissue iron score (TIS) and LIC, which were paralleled by changes in serum ferritin. TIS, LIC and serum ferritin in a subgroup of patients with advanced fibrosis and cirrhosis treated with DSX and DFO (Study 0107) TIS LIC, mg Fe/g dw Serum ferritin, ng/mL DSX (n=26) DFO (n=30) DSX (n=26) DFO (n=30) DSX (n=26) DFO (n=30) *Median (min, max) Baseline* 35.5 (4,39) 34 (10,52) 25.5 (2.4,45.9) 19.5 (3.9,55.1) 4195 (321,12646) 4144 (653,15283) Change from baseline* −2 (−43,20) −2 (−25,16) −9.4 (−42.2,13.1) −3.1 (−24.5,12.4) −1269 (−7082,3609) −951 (−8259,1264 Similarly, in Study 0108, DSX treatment produced a decrease in all 3 parameters in patients with β-thalassemia or rare anemia. TIS, LIC and serum ferritin in a subgroup of β-thalassemia and rare anemia patients with advanced fibrosis and cirrhosis (Study 0108) TIS LIC, mg Fe/g dw Serum ferritin, ng/mL β-thalassemia (n=12) Rare anemia (n=7) β-thalassemia (n=12) Rare anemia (n=7) -thalassemia β (n=12) Rare anemia (n=7) *Median (min, max) Baseline* 35 (4,48) 41 (32,49) 29.4 (3.8,37.4) 26.3 (15,51.3) 4813 (440,11698) 2385 (1553,9099) Change from baseline* 2 (−19,27) −3 (−20,1) −1.6 (−18,9.9) −10 (−13.9,8.8) −986 (−4453,2131) −1322 (−2609,1901) Conclusions: Chelation therapy with DSX or DFO is effective in reducing iron overload in patients with advanced fibrosis and cirrhosis. The trends observed in TIS and LIC were closely mirrored by changes in serum ferritin, highlighting the validity of this method for monitoring chelation therapy in this population.


Sign in / Sign up

Export Citation Format

Share Document