Identification of Sulfo-Tyrosines of Factor V.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1731-1731
Author(s):  
Evrim Erdogan ◽  
Michael Kalafatis

Abstract The factor Va molecule is the essential cofactor of the prothrombinase complex. This complex composed of factor Xa and factor Va assembled on a platelet membrane-surface in the presence of Ca2+ ions converts membrane-bound prothrombin to thrombin. Single chain factor V does not bind factor Xa. Single-chain factor V is cleaved by thrombin first at Arg709 followed by cleavages at Arg1018 and Arg1545 to produce the heavy and light chains of the active cofactor (factor Va) and two activation peptides. Efficient thrombin cleavage and activation of factor V is essential for cofactor function and requires tyrosine sulfation. Tyrosine sulfation of factor V also appears to regulate its activity. Seven tyrosine residues in factor V, Tyr665, Tyr696, Tyr698, Tyr1494, Tyr1510, Tyr1515, and Tyr1565 have been identified as potential sites of sulfation. However, which residues are sulfated and their contribution to procofactor activation and cofactor function still remain to be elucidated. Two of the sulfation sites Tyr696 and Tyr698 are located in the acidic amino acid region near to the first required thrombin cleavage site at Arg709. Recent data demonstrated that these residues are essential for factor V activation and cofactor activity. Another acidic amino acid region, 1490–1520 is adjacent to the thrombin cleavage site at Arg1545 required for light chain formation. This region also contains three potential sulfation sites at residues 1494, 1510, and 1515 and was shown to be required for optimum procofactor activation. To ascertain which of these three residues is important for procofactor activation, site-directed mutagenesis was used to create recombinant factor V molecules with mutations 1493DY1494→AF, 1508DDY1510→AAF and 1514DY1515→AF. The clotting and cofactor activity of the 1493DY1494→AF and 1514DY1515→AF mutants was similar to the clotting activity observed with the wild type recombinant factor Va molecule following activation by thrombin or RVV-V activator. In contrast, under similar experimental conditions recombinant factor V with the substitution 1508DDY1510→AAF was deficient in its clotting activity and had impaired cofactor activity. Moreover, following prolonged incubation with thrombin, no light chain formation was observed in the factor V molecule bearing the 1508DDY1510→AAF mutation. Thus, amino acid residues 1508–1510 of factor V are required for thrombin interaction with the procofactor which in turn appears necessary for cleavage at Arg1545. Studies of sulfated proteins have shown that the effect of sulfo-tyrosines on protein structure/function can be preserved by replacing them with glutamic acid. To explicitly identify the sulfated tyrosines on the factor V molecule, we mutated Tyr696, Tyr698 and Tyr1510 to glutamic acid and transfected them into COS-7L cells. Expression was performed in the presence of media containing or devoid of sulfate. In the presence of sulfate, the cofactor and clotting activities of the DY696DY698→DEDE and DDY1510→DDE mutants, separately were similar to the wild type recombinant factor Va molecule. However, in the absence of sulfate, the wild type and the mutant recombinant factor V molecules had both impaired cofactor activity and clotting activity following their activation with thrombin. However, their respective activity was higher than the activity of the factor V molecule bearing the 1508DDY1510→AAF mutation. Our data suggest that residues 696, 698, and 1510 of factor V appear to be sulfated and might be important for procofactor activation and cofactor function.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1711-1711
Author(s):  
Rinku Majumder ◽  
Mary Ann Quinn-Allen ◽  
Barry R. Lentz ◽  
William H. Kane

Abstract Tightly associated factors Va and Xa serve as the essential prothrombin-activating complex whose assembly is triggered by occupancy of phosphatidylserine (PS) regulatory sites on both proteins. Factor Va C2 domain contains a binding site for soluble, short chain PS (C6PS) that includes the indole moieties of Trp2063/Trp2064 at the apex of a loop (“spike-1”) (Srivastava A, Quinn-Allen MA, Kim SW, Kane WH, Lentz BR. Biochemistry, 2001, 40(28): 8246–55). Our recent data show that there is a C6PS site in the factor Va2 C1 domain that serves as a regulatory site for assembly and/or activity of the FVa2-FXa complex (Majumder R, Quinn-Allen MA, Kane WH & Lentz BR. Manuscript in Preparation). This C6PS-binding site also involves aromatic and hydrophobic residues (Tyr1956/Tyr1957) located in a homologous loop whose apex is termed “spike 3”. In order to identify the amino acid residues in the C1 domain that contribute to the PS-mediated cofactor activity of factor Va2, charged and hydrophobic residues predicted to be exposed in FVa2-C1 domain were mutated to alanine in clusters of 1–3 mutations per construct. The resultant 20 mutants (R1880A, D1892A, (K1896,E1899)A, (F1900,L1901,Y1903)A, (E1905,R1907)A, Y1917A, (E1923,K1924)A, (K1941,E1942)A, (K1954,H1955)A, (Y1956,L1957)A, Y1956A, L1957A, K1958A, E1964A, K1980A, D1995A, R2019A, (R2023,R2027)A, R2023A, R2027A,) and factor V wild type were expressed in Cos-7 cells followed by activation with thrombin, partial purification and concentration using HiTrap SP HP columns. The specific activities of all factor Va mutants were greater than 70% of wild type, with concentrations in the 1.5-7μM range. Recently it has been shown that two mutants (Y1956, L1957)A and (R2023,R2027)A showed decreased binding to immobilized PS and a selective decrease in prothrombinase activity on membranes containing 5% PS (Saleh M, Peng W, Quinn-Allen MA, Macedo-Ribeiro S, Fuentes-Prior P, Bode W & Kane WH. Thromb. Haemost.2004, 91:16–27). Here we report the rate of prothrombin activation in the presence of 1 nM factor Xa, 5 nM factorVa2 (mutants and wild type) and 400 mM C6PS. Enhancement of cofactor activity (E) of factor Va-C1 wild type and mutants by C6PS was measured using the following equation ( Zhai X, Srivastava A, Drummond DC, Daleke D and Lentz BR. Biochemistry. 2002, 41: 5675–84): \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \[E=\ (r_{Xa.Va.PL}/r_{Xa.PL})/(r_{Xa.Va}/r_{Xa})\] \end{document} Here, rXa·Va·PL is the rate of prothrombin activation measured as the initial slope of the rate of change of normalized DAPA fluorescence with time by enzyme in the presence of factor Va and lipid, and other terms are defined analogously. The cofactor activities of (Y1956, L1957) A, Y1956A and L1957A were drastically reduced (values are 1.1, 4.2 and 5.1 respectively) relative to the cofactor activity of the wild type factor Va2 (15). The cofactor activities of (R2023, R2027) A, E1964A and (K1954, H1955) A were also reduced but to a lesser extent (values are 8, 10.6 and 12 respectively). We plan to monitor the binding of these mutants to C6PS and to factor Xa in the presence of C6PS in order to determine the role of these mutations on the assembly and activity of prothrombinase. Supported by grants from the NHLBI (HL43106 to W. Kane and HL 072827 to BRL).


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3977-3977
Author(s):  
Melissa A. Blum ◽  
Daniel O. Beck ◽  
Michael Kalafatis

Abstract The procoagulant enzymatic complex, prothrombinase, which is required for normal hemostasis, is composed of the enzyme, factor Xa, the protein cofactor, factor Va, associated on a cell surface in the presence of divalent metal ions. Incorporation of factor Va into prothrombinase and its interaction with factor Xa increases the catalytic efficiency of the enzyme by five orders of magnitude as compared to factor Xa alone. While the importance of the contribution of factor Va to the activity of factor Xa for rapid thrombin formation by prothrombinase at the place of vascular injury has been long established, the consequence of the interaction of the cofactor with the members of prothrombinase and the molecular mechanism by which factor Va accelerates prothrombin activation remains an enigma. Prothrombin is activated following two cleavages (Arg271/Arg320). Depending on the order of peptide bond cleavage different intermediates are formed. Factor Xa alone cleaves prothrombin sequentially, first at Arg271 to produce fragment 1•2 and prethrombin-2, followed by cleavage at Arg320 to produce fragment 1•2 and thrombin. The prothrombinase complex catalyzes the activation of prothrombin following the opposite pathway (Arg320 followed by Arg271), resulting in a formation of an active intermediate (meizothrombin) and a 300,000-fold increase in the rate of the overall reaction compared with the rate of prothrombin activation observed with factor Xa alone. We have shown that amino acid region 307–348 of factor Va heavy chain is critical for cofactor activity. A peptide containing this amino acid sequence (42 amino acids, N42R) was found to interact with fluorescently labeled factor Xa and to inhibit prothrombinase activity. Our present data show that N42R can be cross-linked to the heavy chain of membrane-bound factor Xa in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have also demonstrated that amino acid region 323–331 from N42R (AP4′) contains a binding site for factor Xa of factor Va heavy chain. Our present data show that a peptide containing amino acid residues 317–326 (AP3) inhibited both prothrombinase activity and the high affinity interaction of factor Va with factor Xa on the membrane surface. Moreover, we have found using site directed mutagenesis and recombinant factor Va that amino acids at the NH2-terminal end of AP4′ (i.e. residues 323–325, Glu-Tyr-Phe) are responsible for the inhibitory effect of AP3 and AP4′ and are crucial for the interaction of factor Va with factor Xa. A tripeptide with this sequence inhibited prothrombinase activity in an assay using a fluorescent thrombin inhibitor. To identify the effect of these peptides on factor Xa’s ability to cleave and activate prothrombin, we studied prothrombin activation by gel electrophoresis. The data demonstrated that several peptides that inhibited both the factor Va-factor Xa interaction on the membrane surface and prothrombinase activity, had the ability to accelerate cleavage of prothrombin by factor Xa alone, in the absence of factor Va. Specifically, N42R and AP3 were found to increase the rate of prothrombin consumption by factor Xa by approximately four-fold when compared to factor Xa acting alone. Both peptides induced acceleration in prethrombin-2 formation suggesting an increased in the rate of cleavage of prothrombin at Arg271. These data suggest that the binding of factor Va to factor Xa through amino acid region 323–331 alone produces an effect on factor Xa that increases its potency for cleavage at Arg271.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1027-1027
Author(s):  
Melissa A. Blum ◽  
Tivadar Orban ◽  
Daniel O. Beck ◽  
Michael Kalafatis

Abstract The prothrombinase complex, composed of the enzyme factor Xa, the cofactor factor Va, and the substrate prothrombin associated on a cell surface in the presence of divalent metal ions, catalyzes the activation of prothrombin to thrombin 300,000-fold more effectively than the enzyme, factor Xa, alone. We have demonstrated that amino acids E323, Y324 and E330, V331 are binding sites for factor Xa on the factor Va heavy chain and are required for coordinating the spatial arrangement of enzyme and substrate directing prothrombin cleavage at two spatially distinct sites. We have also demonstrated that amino acid region 332–336 contains residues that are involved in cofactor function. Peptide studies have identified amino acid residues 334DY335 as major participants in factor Va cofactor activity. We have employed site-directed mutagenesis to study the effect of these amino acids on the catalytic efficiency of prothrombinase. Recombinant factor V molecules with the mutations D334K and Y335F, designated factor VKF, and D334A and Y335A, designated factor VAA were produced, transiently transfected, expressed in COS7L cells, and purified. Kinetic studies demonstrate that while factor VaKF has a KD for factor Xa similar to the KD observed for wild type factor Va, the kcat of prothrombinase assembled with factor VaKF has approximately a 1.5-fold decreased value compared to kcat of prothrombinase assembled with the wild type cofactor molecule. On the contrary, prothrombinase assembled with factor VaAA was found to have a nearly 10-fold decrease kcat, compared to prothrombinase assembled with wild type factor Va. This data suggest that not all amino acid substitutions are well tolerated at positions 334–335. Analysis of the sequence 323–340 using the recently published completed model of coagulation factor Va (pdb entry 1Y61) revealed that amino acids 334–335 are located at the end of a beta-sheet. To ascertain the importance of these mutants and their contribution to cofactor activity we have combined the mutations of amino acids 334–335 with mutations at amino acids 323–324 (E323F, Y324F) and 330–331 (E330M, V331I). We thus created quadruple mutants resulting in recombinant factor VFF/KF, factor VFF/AA, factor VMI/KF and factor VMI/AA. These molecules were transiently expressed in COS-7L cells and studied for their ability to be incorporated into prothrombinase. Free energies associated with the catalytic efficiencies of prothrombinase assembled with each mutant were also calculated (ΔΔGint). The ΔΔGint of interaction for the double mutants, factor VaFF/KF and factor VaMI/KF, had positive values indicating that the side chains of amino acids 330EV331, 323EY324 and 334DY335 located in and around the factor Xa binding site interact in a synergistic manner resulting in the destabilization of the transition state complex and a decelerated rate of catalysis. Conversely, combining the factor Xa binding site mutants with recombinant factor VaAA result in ΔΔGint values of approximately zero. In conclusion, the data demonstrate that replacement of amino acids 334–335 by two hydrophilic residues results in decreased cofactor function. In contrast, replacement of these amino acids by two small hydrophobic residues do not appear to be well tolerated by the cofactor resulting in severely impaired cofactor activity. Altogether, these data demonstrate the importance of amino acid residues D334 and Y335 for the rearrangement of enzyme and substrate required for efficient catalysis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1703-1703 ◽  
Author(s):  
Evrim Erdogan ◽  
Michael A. Bukys ◽  
Thomas Orfeo ◽  
Kenneth G. Mann ◽  
Michael Kalafatis

Abstract Prothrombinase, the enzyme complex required to activate prothrombin, is composed of the serine protease factor Xa and the cofactor factor Va, associated in 1:1 stoichiometry on a phospholipid surface in the presence of Ca2+. Incorporation of factor Va in prothrombinase is required for any meaningful rate of thrombin generation and the arrest of hemorrhage. Factor Va inactivation down-regulates thrombin production resulting in the termination of the hemostatic response. The principal enzyme involved in this down-regulation is activated protein C (APC). Factor Va is formed following enzymatic cleavage of the single chain procofactor, factor V (Mr 330,000) by thrombin. Thrombin cleaves and activates the procofactor sequentially at Arg709, Arg1018, and Arg1545. The active cofactor, factor Va, is composed of heavy (HC105, Mr 105,000) and light (Mr 74,000) chains non-covalently associated in the presence of divalent ions. Previous studies of factor Va inactivation on human umbilical vein endothelial cells (HUVEC) have shown that thrombin cleaves the heavy chain at the COOH-terminus to produce a Mr 97,000 fragment containing the NH2-terminal portion of the heavy chain and a Mr 8,000 peptide representing the COOH-terminus of the molecule which remains attached to the heavy chain by a disulfide bond. The thrombin cleavage appeared to occur between residues 586 and 654. This region contains a consensus sequence for cleavage by thrombin located between residues 640–643 (S-P-R). To evaluate the functional importance of thrombin cleavage at Arg643 for factor Va inactivation, site-directed mutagenesis was used to create recombinant factor V molecules with mutations R643→Q (factor VR643Q) and R643→A (factor VR643A). All recombinant molecules were purified to homogeneity and assayed for activity following extended activation with thrombin. Under similar experimental conditions, cleavage of HC105 and appearance of the Mr 97,000 heavy chain fragment in the wild type molecule correlated with partial loss of cofactor activity, while following incubation of factor VR643Q and factor VR643A with thrombin no cleavage of HC105 at Arg643 was observed and no presence of the Mr 97,000 heavy chain fragment was noticed. Further, no loss in cofactor activity was observed using these mutant recombinant factor Va molecules following extended incubation with thrombin. The endothelial cell surface has been presumed to be the site of PC activation and factor Va inactivation in vivo. The relative phospholipid composition of endothelial membranes has been suggested to be consistent with their ability to support factor Va inactivation in a manner analogous to the commonly used phospholipid system composed of 25% phosphatidylserine and 75% phosphatidylcholine. In the experiments conducted on the HUVEC surface incubation of 20 nM plasma factor V with 0.1 nM thrombin resulted in almost complete cleavage of HC105 over a 60 minute thrombin treatment. In the experiments presented herein much higher concentrations of thrombin were necessary to obtain a similar effect. The combined data suggest the presence of a cofactor for thrombin on the surface of endothelial cells that would facilitate cleavage of factor Va heavy chain at Arg643. Collectively, the data demonstrate that cleavage of HC105 at Arg643 by thrombin results in a partially inactive cofactor molecule and provide for an APC-independent anticoagulant effect of thrombin.


2003 ◽  
Vol 279 (4) ◽  
pp. 3084-3095 ◽  
Author(s):  
Daniel O. Beck ◽  
Michael A. Bukys ◽  
Lisam S. Singh ◽  
Katalin A. Szabo ◽  
Michael Kalafatis

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2131-2131
Author(s):  
Jamila Hirbawi ◽  
Michael Kalafatis

Abstract Abstract 2131 Poster Board II-108 The proteolytic conversion of prothrombin to thrombin is catalyzed by the prothrombinase complex composed of the enzyme, factor Xa (fXa), and the cofactor, factor Va (fVa), assembled on a membrane surface in the presence of Ca2+. FXa alone can activate prothrombin following sequential cleavages at Arg271 and Arg320 yielding the transient inactive intermediate prethrombin 2. However, the interaction of fVa with fXa on a membrane/cell surface in the presence of divalent metal ions and formation of the prothrombinase complex results in the reversal of the order of cleavages and a 300,000-fold increase in the catalytic efficiency of fXa for thrombin generation. A first cleavage of prothrombin by prothrombinase at Arg320 produces the active intermediate meizothrombin, while the second cleavage at Arg271 produces thrombin. Thrombin and prothrombin contain two positively charged binding regions (anion binding exosite I, ABE-I and anion binding exosite II, ABE II), that are crucial for protein function. Initial cleavage of prothrombin at Arg320 by prothrombinase which is absolutely factor Va dependent, entirely exposes (pro)exosite I. FVa is required for the specific recognition of prothrombinase by (pro)exosite I of prothrombin. The COOH-terminal region of the heavy chain of fVa contains acidic amino acid clusters that are important for cofactor activity. We have investigated the role of amino acid region 659-663 that contains five consecutive acidic amino acid residues. To ascertain the function of this region, site-directed mutagenesis was performed. We have constructed a mutant molecule with this region deleted (fVD659-663) and a mutant molecule in which all five residues were mutated to lysine (fV5K, charge reversal). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS7L cells, purified to homogeneity, and assessed for cofactor activity. Two-stage clotting assays revealed that the mutant molecules had reduced clotting activities compared to fVaWT. Kinetic analyses studying prothrombinase assembled with the mutant molecules demonstrated diminished kcat values, while the affinity of all mutant molecules for factor plasma-derived fXa was similar to fVaWT. Gel electrophoresis analyzing plasma-derived and recombinant mutant prothrombin activation demonstrated delayed cleavage of prothrombin at both Arg320 and Arg271 by prothrombinase assembled with the mutant molecules. Using recombinant prothrombin molecules we determined that cleavage at Arg271 by prothrombinase assembled with either fVaD659-663 or fVa5K was severely impaired compared to cleavage at Arg320 by prothrombinase assembled with the same recombinant cofactor molecules, resulting in lingering of meizothrombin throughout the activation process. To ascertain the effect of the mutations of the fVa heavy chain on the cleavage at Arg271 alone following the transition that occurs after cleavage at Arg320, we compared the rate of cleavage of active-site blocked meizothrombin (FPR-meizothrombin) by prothrombinase assembled with either fVaWT or fVaD659-663. The data demonstrate a delay for cleavage of FPR-meizothrombin at Arg271 by prothrombinase assembled with fVaD659-663 as compared to the same reaction catalyzed by prothrombinase assembled with fVaWT. Quantitative scanning densitometry of fragment 1•2-A demonstrated a ∼4-fold delay in cleavage of FPR-meizothrombin at Arg271 by prothrombinase assembled with fVaD659-663, compared to cleavage at Arg271 by prothrombinase assembled with fVaWT. Direct comparison between the rates of cleavage of FPR-meizothrombin by membrane-bound fXa alone or by prothrombinase assembled with fVaRVVD659-663 do not show any significant differences. Thus, deletion of amino acid region 659-663 virtually eliminates the acceleration in the rate of cleavage at Arg271 of meizothrombin attributed to the interaction of fVa with fXa. These data demonstrate that amino acid sequence 659DDDED663 from the factor Va heavy chain, regulates meizothrombin concentration during activation of prothrombin by prothrombinase. Disclosures: No relevant conflicts of interest to declare.


Biochemistry ◽  
2010 ◽  
Vol 49 (39) ◽  
pp. 8520-8534 ◽  
Author(s):  
Jamila Hirbawi ◽  
John L. Vaughn ◽  
Michael A. Bukys ◽  
Hans L. Vos ◽  
Michael Kalafatis

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1933-1933
Author(s):  
Catherine P.M. Hayward ◽  
Nola Fuller ◽  
Shilun Zheng ◽  
Frederic Adam ◽  
Samira Jeimy ◽  
...  

Abstract Factor V is an essential cofactor for blood coagulation that circulates in platelets and plasma. Unlike plasma factor V, platelet factor V is stored complexed with the polymeric α-granule protein multimerin. In analyses of human platelet factor V on nonreduced denaturing multimer gels, we identified that approximately 25% was variable in size and migrated larger than single chain factor V, the largest form in plasma. Upon reduction, the unusually large, variably-sized forms of platelet factor V liberated components that comigrated with other forms of platelet factor V, indicating that they contained factor V in interchain disulfide-linkages. With thrombin cleavage, factor Va heavy and light chain domains, but not B-domains, were liberated from the components linked by interchain disulfide bonds, indicating that the single cysteine in the B-domain at position 1085 was the site of disulfide linkage. Because unusually large factor V had a variable size and included forms larger than factor V dimers, the data suggested disulfide-linkage with another platelet protein, possibly multimerin. Immunoprecipitation experiments confirmed that all unusually large factor V in platelets was associated with multimerin and it remained associated in 0.5 M salt. Multimerin immunodepletion of the normal pooled platelet lysate removed 100 ± 0% of multimerin and 47.0 ± 2.4% of total factor V antigen, whereas sham immunodepletion removed 12.0 ± 3.0 % of multimerin and 4.0 ± 4.0% of factor V antigen (means ± 1 S.D. for 3 experiments). Analyses of serial factor V immunopurified samples indicated that platelets contained a subpopulation of multimerin polymers that resisted dissociation from factor V by denaturing detergent and comigrated with unusually large platelet factor V, before and after thrombin cleavage. The suggestion that only a subpopulation of multimerin was covalently linked to factor V was consistent with the estimated 17 fold molar excess of multimerin subunits to factor V molecules in platelets. The disulfide-linked complexes of multimerin and factor V in platelets, that are cleaved by thrombin to liberate factor Va, could be important for modulating the function of platelet factor V and its delivery onto activated platelets. Multimerin could function to hold about half of the platelet pool of factor V in covalent and noncovalent linkages, until granule release occurs and thrombin cleavages liberate factor Va for prothrombinase assembly on the platelet surface, akin to the way supporting scaffolds hold pieces of plastic models in a unit until their removal for model assembly is desired.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1695-1695
Author(s):  
Michael A. Bukys ◽  
Paul Y. Kim ◽  
Michael E. Nesheim ◽  
Michael Kalafatis

Abstract Prothrombinase is the enzymatic complex responsible for timely thrombin formation. Activation of human prothrombin is the consequence of two cleavages at Arg271 and Arg320 in prothrombin by factor Xa. Membrane-bound factor Xa alone catalyzes prothrombin activation following initial cleavage at Arg271 and prethrombin 2 formation (pre2 pathway). Factor Va directs prothrombin activation by factor Xa through the meizothrombin pathway, characterized by initial cleavage at Arg320 (meizo pathway). We have previously shown that a pentapeptide encompassing amino acid sequence 695–699 from the COOH-terminus of the heavy chain of factor Va (Asp-Tyr-Asp-Tyr-Gln, DYDYQ) interacts with anion binding exosite I (ABE-I) of thrombin and inhibits prothrombin activation by prothrombinase. The peptide was found to be a competitive inhibitor of prothrombinase with respect to substrate. According to the mode of inhibition, we postulated that the peptide binds prothrombin in competition with the binding of the substrate to the enzyme, and inhibits prothrombinase activity by substrate depletion. This mode of DYDYQ inhibition of prothrombin activation by the factor Va-factor Xa complex is similar to that previously demonstrated for sulfated hirugen. To understand the mechanism of inhibition of thrombin formation by DYDYQ we have studied prothrombin activation by gel electrophoresis. Titration of plasma-derived prothrombin activation by fully assembled prothrombinase, with increasing concentrations of peptide, resulted in complete inhibition of the meizo pathway. However, thrombin formation still occurred through the pre2 pathway. Higher peptide concentrations were required to impair thrombin formation through the latter pathway. These data demonstrate that the peptide preferentially inhibits initial cleavage of prothrombin by prothrombinase at Arg320. These findings were corroborated by studying the kinetics of activation of recombinant mutant prothrombin molecules rMZ-II (R155A/R284A/R271A) and rP2-II (R155A/R284A/R320A) which can be only cleaved at Arg320 and Arg271 respectively. Cleavage of rMZ-II by prothrombinase was completely inhibited by low concentrations of DYDYQ while high concentrations of pentapeptide were required to inhibit cleavage of rP2-II. The pentapeptide also interfered with thrombin formation by membrane-bound factor Xa alone in the absence of factor Va. Nonetheless, while the rate for cleavage at Arg271 of plasma-derived prothrombin or rP2-II by membrane-bound factor Xa alone was significantly accelerated in the presence of DYDYQ, resulting in accumulation of prethrombin 2, the rate for cleavage at Arg320 of plasma-derived prothrombin or rMZ-II by membrane-bound factor Xa alone was only moderately affected by the pentapeptide. Our data demonstrate that a pentapeptide mimicking amino acids 695–699 of the heavy chain of factor Va has opposing effects on membrane-bound factor Xa for prothrombin activation, depending on the incorporation of factor Va in prothrombinase. In the presence of the cofactor the peptide inhibits the rate of thrombin generation by specifically interfering with initial cleavage of prothrombin at Arg320, while in the absence of factor Va the pentapeptide accelerates cleavage of prothrombin by factor Xa at Arg271. Thus, the amino acid region spatially surrounding proexosite I in prothrombin most likely has two interactive sites for the components of prothrombinase, a factor Va interactive site and a factor Xa binding site.


Sign in / Sign up

Export Citation Format

Share Document