v antigen
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 7)

H-INDEX

36
(FIVE YEARS 1)

Antibodies ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 37
Author(s):  
Kei Amemiya ◽  
Jennifer L. Dankmeyer ◽  
Sarah L. Keasey ◽  
Sylvia R. Trevino ◽  
Michael M. Wormald ◽  
...  

Plague is a zoonotic disease that is caused by Yersinia pestis. Monoclonal antibodies (mAbs) that bind to the V-antigen, a virulence factor that is produced by Y. pestis, can passively protect mice from plague. An analysis of protective mAbs that bind to V-antigen was made to assess binding sites, avidities, and affinities. Anti-V mAbs were screened for their efficacy in a murine model of plague. Antigen-binding sites of protective V mAbs were determined with a linear peptide library, V-antigen fragment, competitive binding, and surface plasmon resonance. The avidities to the V-antigen was determined by ELISA, and affinities of the mAbs to the V-antigen were determined by surface plasmon resonance. The most protective mAb 7.3 bound to a unique conformational site on the V-antigen, while a less protective mAb bound to a different conformational site located on the same V-antigen fragment as mAb 7.3. The avidity of mAb 7.3 for the V-antigen was neither the strongest overall nor did it have the highest affinity for the V-antigen. The binding site of the most protective mAb was critical in its ability to protect against a lethal plague challenge.


2020 ◽  
Vol 62 (3) ◽  
pp. 177-184 ◽  
Author(s):  
Elahe Seyed Hosseini ◽  
Mehdi Zeinoddini ◽  
Ali Reza Saeedinia ◽  
Valiollah Babaeipour

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Tiandi Wei ◽  
Jing Gong ◽  
Guojing Qu ◽  
Mingyu Wang ◽  
Hai Xu

Abstract Background Yersinia pestis, the etiological pathogen of plague, is capable of repressing the immune response of white blood cells to evade phagocytosis. The V-antigen (LcrV) was found to be involved in this process by binding to human Toll-like Receptor 2 (TLR2). The detailed mechanism behind this LcrV and TLR2 mediated immune response repression, however, is yet to be fully elucidated due to the lack of structural information. Results In this work, with protein structure modelling, we were able to construct a structure model of the heterotetramer of Y. pestis LcrV and human TLR2. Molecular dynamics simulation suggests the stability of this structure in aquatic environment. The LcrV model has a dumbbell-like structure with two globule domains (G1 at N-terminus and G2 away from membrane) connected with a coiled-coil linker (CCL) domain. The two horseshoe-shape TLR2 subunits form a V-shape structure, are not in direct contact with each other, and are held together by the LcrV homodimer. In this structure model, both the G1 and CCL domains are involved in the formation of LcrV homodimer, while all three domains are involved in LcrV-TLR2 binding. A mechanistic model was proposed based on this heterotetrameric structure model: The LcrV homodimer separates the TLR2 subunits to inhibit the dimerization of TLR2 and subsequent signal transfer for immune response; while LcrV could also inhibit the formation of heterodimers of TLR2 with other TLRs, and leads to immune response repression. Conclusions A heterotetrameric structure of Y. pestis LcrV and human TLR2 was modelled in this work. Analysis of this modelled structure showed its stability in aquatic environments and the role of LcrV domains and residues in protein-protein interaction. A mechanistic model for the role of LcrV in Y. pestis pathogenesis is raised based on this heterotetrameric structure model. This work provides a hypothesis of LcrV function, with which further experimental validation may elucidate the role of LcrV in human immune response repression.


Antibodies ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 52 ◽  
Author(s):  
Sawa ◽  
Kinoshita ◽  
Inoue ◽  
Ohara ◽  
Moriyama

The mechanisms underlying the effects of immunoglobulins on bacterial infections are thought to involve bacterial cell lysis via complement activation, phagocytosis via bacterial opsonization, toxin neutralization, and antibody-dependent cell-mediated cytotoxicity. Nevertheless, recent advances in the study of the pathogenicity of Gram-negative bacteria have raised the possibility of an association between immunoglobulin and bacterial toxin secretion. Over time, new toxin secretion systems like the type III secretion system have been discovered in many pathogenic Gram-negative bacteria. With this system, the bacterial toxins are directly injected into the cytoplasm of the target cell through a special secretory apparatus without any exposure to the extracellular environment, and therefore with no opportunity for antibodies to neutralize the toxin. However, antibodies against the V-antigen, which is located on the needle-shaped tip of the bacterial secretion apparatus, can inhibit toxin translocation, thus raising the hope that the toxin may be susceptible to antibody targeting. Because multi-drug resistant bacteria are now prevalent, inhibiting this secretion mechanism is an attractive alternative or adjunctive therapy against lethal bacterial infections. Thus, it is not unreasonable to define the blocking effect of anti-V-antigen antibodies as the fifth mechanism for immunoglobulin action against bacterial infections.


Author(s):  
Teiji Sawa ◽  
Mao Kinoshita ◽  
Keita Inoue ◽  
Junya Ohara ◽  
Kiyoshi Moriyama

The mechanisms underlying the effects of γ-globulin therapy for bacterial infections are thought to involve bacterial cell lysis via complement activation, phagocytosis via bacterial opsonization, toxin neutralization, and antibody-dependent cell-mediated cytotoxicity. Nevertheless, recent advances in the study of pathogenicity in gram-negative bacteria have raised the possibility of an association between γ-globulin and bacterial toxin secretion. Over time, new toxin secretion systems like the type III secretion system have been discovered in many pathogenic gram-negative bacteria. With this system, the bacterial toxins are directly injected into the cytoplasm of the target cell through a special secretory apparatus without any exposure to the extracellular environment and, therefore, with no opportunity for antibodies to neutralize the toxin. However, because antibodies against the V-antigen, which is located on the needle-shaped tip of the bacterial secretion apparatus, can inhibit toxin translocation, this raises the hope that the toxin might be susceptible to antibody targeting. Because multi-drug resistant bacteria are now prevalent, inhibiting this secretion mechanism is attractive as an alternative or adjunctive therapy against lethal bacterial infections. Thus, it would not be unreasonable to define the blocking effect of anti-V-antigen antibodies as the fifth mechanism for immunoglobulin action against bacterial infections.


2019 ◽  
Author(s):  
Mao Kinoshita ◽  
Masaru Shimizu ◽  
Koichi Akiyama ◽  
Hideya Kato ◽  
Kiyoshi Moriyama ◽  
...  

AbstractThe V-antigen, a virulence-associated protein, was first identified in Yersinia pestis more than half a century ago. Since then, other V-antigen homologs and orthologs have been discovered and are now considered vital molecules for the toxic effects mediated by the type III secretion system in infections caused by various pathogenic Gram-negative bacteria. After purifying recombinant V-antigen proteins including PcrV from Pseudomonas aeruginosa, LcrV from Yersinia, LssV from Photorhabdus luminescens, AcrV from Aeromonas salmonicida, and VcrV from Vibrio parahaemolyticus, we developed an enzyme-linked immunoabsorbent assay to measure titers against each V-antigen in the sera collected from 186 adult volunteers. Different titer-specific correlation levels were determined for the five V-antigens. The anti-LcrV and anti-AcrV titers shared the highest correlation with each other, with a correlation coefficient of 0.84. The next highest correlation coefficient was between anti-AcrV and anti-VcrV titers at 0.79, while the lowest correlation was found between anti-LcrV and anti-VcrV titers, which were still higher than 0.7 Sera from mice immunized with one of the five recombinant V-antigens displayed cross-antigenicity with some of the other four V-antigens, supporting the results from the human sera. Thus, the serum anti-V-antigen titer measurement system could potentially be used for epidemiological investigations on various pathogenic Gram-negative bacteria.


Author(s):  
K. Kleesiek ◽  
C. Götting ◽  
J. Diekmann ◽  
J. Dreier ◽  
M. Schmidt
Keyword(s):  

Author(s):  
K. Kleesiek ◽  
C. Götting ◽  
J. Diekmann ◽  
J. Dreier ◽  
M. Schmidt
Keyword(s):  

2014 ◽  
Vol 58 (5) ◽  
pp. 267-285 ◽  
Author(s):  
Teiji Sawa ◽  
Hideya Katoh ◽  
Hiroaki Yasumoto

Sign in / Sign up

Export Citation Format

Share Document