prothrombinase complex
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 15)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clay T. Cohen ◽  
Nancy A. Turner ◽  
Joel L. Moake

AbstractIn a previous study, we reported that human endothelial cells (ECs) express and produce their own coagulation factors (F) that can activate cell surface FX without the additions of external proteins or phospholipids. We now describe experiments that detail the expression and production in ECs and fibroblasts of the clotting proteins necessary for formation of active prothrombinase (FV–FX) complexes to produce thrombin on EC and fibroblast surfaces. EC and fibroblast thrombin generation was identified by measuring: thrombin activity; thrombin–antithrombin complexes; and the prothrombin fragment 1.2 (PF1.2), which is produced by the prothrombinase cleavage of prothrombin (FII) to thrombin. In ECs, the prothrombinase complex uses surface-attached FV and γ-carboxyl-glutamate residues of FX and FII to attach to EC surfaces. FV is also on fibroblast surfaces; however, lower fibroblast expression of the gene for γ-glutamyl carboxylase (GGCX) results in production of vitamin K-dependent coagulation proteins (FII and FX) with reduced surface binding. This is evident by the minimal surface binding of PF1.2, following FII activation, of fibroblasts compared to ECs. We conclude that human ECs and fibroblasts both generate thrombin without exogenous addition of coagulation proteins or phospholipids. The two cell types assemble distinct forms of prothrombinase to generate thrombin.


2021 ◽  
Author(s):  
Clay Cohen ◽  
Nancy Turner ◽  
Joel Moake

Abstract In a previous study, we reported that human endothelial cells (ECs) express and produce their own coagulation factors (F) that can activate cell surface FX without the additions of external proteins or phospholipids. We now describe experiments that detail the expression and production in ECs and fibroblasts of the clotting proteins necessary for formation of active prothrombinase (FV-FX) complexes to produce thrombin on EC and fibroblast surfaces. EC and fibroblast thrombin generation was identified by measuring: thrombin activity; thrombin-antithrombin complexes; and the prothrombin fragment 1.2 (PF1.2), which is produced by the prothrombinase cleavage of prothrombin (FII) to thrombin. In ECs, the prothrombinase complex uses surface-attached FV and g-carboxyl-glutamate residues of FX and FII to attach to EC surfaces. FV is also on fibroblast surfaces; however, lower fibroblast expression of the gene for γ-glutamyl carboxylase (GGCX) results in production of vitamin K-dependent coagulation proteins (FII and FX) with reduced surface binding. This is evident by the minimal surface binding of PF1.2, following FII activation, of fibroblasts compared to ECs. We conclude that human ECs and fibroblasts both generate thrombin without exogenous addition of coagulation proteins or phospholipids. The two cell types assemble distinct forms of prothrombinase to generate thrombin.


Blood ◽  
2021 ◽  
Author(s):  
Eliza A Ruben ◽  
Michael J Rau ◽  
James Fitzpatrick ◽  
Enrico Di Cera

Coagulation factor V is the precursor of factor Va that, together with factor Xa, Ca2+ and phospholipids, defines the prothrombinase complex and activates prothrombin in the penultimate step of the coagulation cascade. Here we present cryo-EM structures of human factors V and Va at atomic (3.3 Å) and near-atomic (4.4 Å) resolution, respectively. The structure of fV reveals the entire A1-A2-B-A3-C1-C2 assembly but with a surprisingly disordered B domain. The C1 and C2 domains provide a platform for interaction with phospholipid membranes and support the A1 and A3 domains, with the A2 domain sitting on top of them. The B domain is highly dynamic and visible only for short segments connecting to the A2 and A3 domains. The A2 domain reveals all sites of proteolytic processing by thrombin and activated protein C, a partially buried epitope for binding factor Xa and fully exposed epitopes for binding activated protein C and prothrombin. Removal of the B domain and activation to fVa exposes the sites of cleavage by activated protein C at R306 and R506 and produces increased disorder in the A1-A2-A3-C1-C2 assembly, especially in the C-terminal acidic portion of the A2 domain responsible for prothrombin binding. Ordering of this region and full exposure of the factor Xa epitope emerge as a necessary step for the assembly of the prothrombin-prothrombinase complex. These structures offer molecular context for the function of factors V and Va and pioneer the analysis of coagulation factors by cryo-EM.


2020 ◽  
pp. jbc.RA120.016341
Author(s):  
Teodolinda Petrillo ◽  
Francis Ayombil ◽  
Cornelis van't Veer ◽  
Rodney M. Camire

Coagulation factor V (FV) plays an anticoagulant role but serves as a procoagulant cofactor in the prothrombinase complex once activated to FVa. At the heart of these opposing effects is the proteolytic removal of its central B-domain, including conserved functional landmarks (basic region, BR; 963-1008 and acidic region 2, AR2; 1493-1537) that enforce the inactive FV procofactor state. Tissue factor pathway inhibitor α (TFPIα) has been associated with FV as well as FV-short, a physiologically relevant isoform with a shortened B-domain missing the BR. However, it is unclear which form(s) of FV are physiologic ligands for TFPIα. Here, we characterize the binding and regulation of FV and FV-short by TFPIα via its positively charged C-terminus (TFPIα-BR) and examine how bond cleavage in the B-domain influences these interactions. We show that FV-short is constitutively active and functions in prothrombinase like FVa. Unlike FVa, FV-short binds with high affinity (Kd ~1 nM) to TFPIα-BR which blocks procoagulant function unless FV-short is cleaved at Arg1545, removing AR2. Importantly, we do not observe FV binding (μM detection limit) to TFPIα. However, cleavage at Arg709 and Arg1018 displaces the FV BR, exposing AR2 and allowing TFPIα to bind via its BR. We conclude that for full length FV, the detachment of FV BR from AR2 is necessary and sufficient for TFPIα binding and regulation. Our findings pinpoint key forms of FV, including FV-short, that act as physiologic ligands for TFPIα and establish a mechanistic framework for assessing the functional connection between these proteins.


Blood ◽  
2020 ◽  
Vol 136 (21) ◽  
pp. 2469-2472 ◽  
Author(s):  
Valerie A. Novakovic ◽  
Gary E. Gilbert

Abstract Recent reports indicate that suspended skeletal and cardiac myosin, such as might be released during injury, can act as procoagulants by providing membrane-like support for factors Xa and Va in the prothrombinase complex. Further, skeletal myosin provides membrane-like support for activated protein C. This raises the question of whether purified muscle myosins retain procoagulant phospholipid through purification. We found that lactadherin, a phosphatidyl-l-serine–binding protein, blocked >99% of prothrombinase activity supported by rabbit skeletal and by bovine cardiac myosin. Similarly, annexin A5 and phospholipase A2 blocked >95% of myosin-supported activity, confirming that contaminating phospholipid is required to support myosin-related prothrombinase activity. We asked whether contaminating phospholipid in myosin preparations may also contain tissue factor (TF). Skeletal myosin supported factor VIIa cleavage of factor X equivalent to contamination by ∼1:100 000 TF/myosin, whereas cardiac myosin had TF-like activity >10-fold higher. TF pathway inhibitor inhibited the TF-like activity similar to control TF. These results indicate that purified skeletal muscle and cardiac myosins support the prothrombinase complex indirectly through contaminating phospholipid and also support factor X activation through TF-like activity. Our findings suggest a previously unstudied affinity of skeletal and cardiac myosin for phospholipid membranes.


2020 ◽  
Vol 295 (45) ◽  
pp. 15208-15209
Author(s):  
Maria Luiza Vilela Oliva ◽  
Ingrid Dreveny ◽  
Jonas Emsley

A careful balance between active-site and exosite contributions is critically important for the specificity of many proteases, but this balance is not yet defined for some of the serine proteases that serve as coagulation factors. Basavaraj and Krishnaswamy have closed an important gap in our knowledge of coagulation factor X activation by the intrinsic Xase complex by showing that exosite binding plays a critical role in this process, which they describe as a “dock and lock.” This finding not only significantly enhances our understanding of this step in the coagulation cascade and highlights parallels with the prothrombinase complex, but will also provide a novel rationale for inhibitor development in the future.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Nora V. Butta ◽  
María Teresa Alvarez Román ◽  
Elena Monzón Manzano ◽  
Paula Acuña ◽  
Mónica Martín ◽  
...  

Introduction: Platelet surface glycoproteins (GPs) are highly glycosylated and are key elements for platelet function since most of them constitute receptors for adhesion ligands. However, exact role of their glycan composition is not clear. Under normal conditions, platelets contain sialic acid in the carbohydrate side chains of their GPs, and it has been described that alterations in the degree of their sialinization can affect the clearance of platelets. This mechanism has been proposed as involved in etiopathogenesis of immune thrombocytopaenia (ITP), mainly in those patients who do not respond to treatments. Thus, after the loss of sialic acid, there would be a greater exposure of galactose and of N-acetyl-glucosamine residues on the surface of circulating platelets to hepatic Ashwell-Morell receptors, which could induce their phagocytosis and platelet clearance. On the other hand, procoagulant platelets, defined as the platelet subpopulation that binds functional prothrombinase, exposed on their surface increased levels of P-selectin and GPIb, two glycan rich GPs. So, it is tempting to speculate that changes in glycan residues on platelet surface may induce changes in their function. Aim: We aimed to assess in ITP patients whether changes in platelet glycosylation, mainly the loss of sialic acid, may condition platelet function, apoptosis and binding of prothrombinase complex. Methods: This is an observational, prospective and transversal study approved by Ethics Committee from La Paz University Hospital. One hundred and eight patients with chronic primary ITP (68 with a platelet count ≥30x103 platelets/µL and 40 with a platelet count <30x103 platelets/µL) and 132 healthy controls were included after signing the informed consent. Platelet activation markers were determined in platelet rich plasma; whereas platelet glycosylation, binding of prothrombinase, annexin V and caspase's activities were assayed in washed platelets. Samples were analyzed by flow cytometry. Table 1 shows lectins tested and their sugar-binding specificity. Data were analyzed with GraphPad Prism 6.0 software. Results: Platelets from ITP patients with a platelet count <30x103/µL exposed less sialic acid in correspondence to an enhanced binding of lectins to non-sialylated residues. Moreover, levels of α1,6-Fucose, a glycan residue which could directly regulate antibody-dependent cellular cytotoxicity, and of α-Mannose, which could be recognized by the mannose binding lectin and activate complement pathway, were increased in platelets from these ITP patients. In accordance, sialic acid loss and consequent platelet surface exposure of other glycoside residues were inversely related to platelet count and ability to be activated (Table 1). These differences in glycosylation observed in ITP patients with a platelet count <30x103/µL were accompanied by a less ability of platelets to be activated (Figure 1), an increased exposure of phosphatidylserine and higher caspase activites (Figure 2). Moreover, increased exposure of phosphatidylserine and of N-acetyl-glucosamine residues (measured through the binding of WGA) enhanced binding of prothrombinase complex (Figure 3). Conclusion: Changes in glycoside composition of GPs on platelet's surface impaired their functional capacity, increases their apoptosis and modifies conditions for the binding of coagulation proteins. These modifications in platelet's glycoside residues seem to be related to severity of ITP. This work was supported by grants from FIS-FONDOS FEDER (PI19/00772) and and Platelet Disorder Support Association. EMM holds a predoctoral fellowship from Fundación Española de Trombosis y Hemostasia (FETH-SETH). Disclosures Butta: Grifols: Research Funding; Novartis: Speakers Bureau; ROCHE: Research Funding, Speakers Bureau; Pfizer: Speakers Bureau; SOBI: Speakers Bureau; Takeda: Research Funding, Speakers Bureau; NovoNordisk: Speakers Bureau. Alvarez Román:Grifols: Research Funding; Bayer: Consultancy; Novartis: Speakers Bureau; Roche: Speakers Bureau; Pfizer,: Research Funding, Speakers Bureau; SOBI,: Consultancy, Research Funding, Speakers Bureau; Takeda: Research Funding, Speakers Bureau; NovoNordisk,: Research Funding, Speakers Bureau. Martín:SOBI: Research Funding; Pfizer: Research Funding, Speakers Bureau; Roche: Speakers Bureau; Novartis: Speakers Bureau; NovoNordisk: Speakers Bureau. Rivas Pollmar:Novartis: Speakers Bureau; Roche: Speakers Bureau; Pfizer: Speakers Bureau. Justo Sanz:Takeda: Current Employment. García Barcenilla:NovoNordisk: Research Funding, Speakers Bureau; Takeda: Research Funding, Speakers Bureau; Pfizer,: Speakers Bureau; Roche: Speakers Bureau; Bayer: Speakers Bureau; Novartis: Speakers Bureau. Canales:Celgene: Honoraria; Janssen: Speakers Bureau; Novartis: Honoraria; Roche: Honoraria; Gilead: Honoraria; Sandoz: Honoraria; iQone: Honoraria; Takeda: Speakers Bureau; Sandoz: Speakers Bureau; Roche: Speakers Bureau; Janssen: Speakers Bureau; Sandoz: Honoraria; Roche: Honoraria; Takeda: Speakers Bureau; Novartis: Honoraria; Sandoz: Speakers Bureau; Karyopharm: Honoraria; Roche: Speakers Bureau; Janssen: Honoraria; Karyopharm: Honoraria; Janssen: Honoraria. Jimenez-Yuste:F. Hoffman-La Roche Ltd, Novo Nordisk, Takeda, Sobi, Pfizer, Grifols, Octapharma, CSL Behring, Bayer: Honoraria; F. Hoffman-La Roche Ltd, Novo Nordisk, Takeda, Sobi, Pfizer: Consultancy; Grifols, Novo Nordisk, Takeda, Sobi, Pfizer: Research Funding.


2020 ◽  
Vol 120 (11) ◽  
pp. 1512-1523
Author(s):  
Mark Schreuder ◽  
Geraldine Poenou ◽  
Viola J. F. Strijbis ◽  
Ka Lei Cheung ◽  
Pieter H. Reitsma ◽  
...  

AbstractThe venom of the Australian snake Pseudonaja textilis comprises powerful prothrombin activators consisting of factor X (v-ptFX)- and factor V-like proteins. While all vertebrate liver-expressed factor X (FX) homologs, including that of P. textilis, comprise an activation peptide of approximately 45 to 65 residues, the activation peptide of v-ptFX is significantly shortened to 27 residues. In this study, we demonstrate that exchanging the human FX activation peptide for the snake venom ortholog impedes proteolytic cleavage by the intrinsic factor VIIIa–factor IXa tenase complex. Furthermore, our findings indicate that the human FX activation peptide comprises an essential binding site for the intrinsic tenase complex. Conversely, incorporation of FX into the extrinsic tissue factor–factor VIIa tenase complex is completely dependent on exosite-mediated interactions. Remarkably, the shortened activation peptide allows for factor V-dependent prothrombin conversion while in the zymogen state. This indicates that the active site of FX molecules comprising the v-ptFX activation peptide partially matures upon assembly into a premature prothrombinase complex. Taken together, the shortened activation peptide is one of the remarkable characteristics of v-ptFX that has been modified from its original form, thereby transforming FX into a powerful procoagulant protein. Moreover, these results shed new light on the structural requirements for serine protease activation and indicate that catalytic activity can be obtained without formation of the characteristic Ile16–Asp194 salt bridge via modification of the activation peptide.


2020 ◽  
Vol 4 (15) ◽  
pp. 3716-3727
Author(s):  
Annette von Drygalski ◽  
Vikas Bhat ◽  
Andrew J. Gale ◽  
Patricia M. Averell ◽  
Thomas J. Cramer ◽  
...  

Abstract Control of bleeding with direct-acting oral anticoagulants (DOACs) remains an unmet clinical need. Activated superFactor V (superFVa) is an engineered activated protein C (APC)–resistant FVa variant with enhanced procoagulant activity resulting from an A2/A3 domain disulfide bond and was studied here for control of DOAC-induced bleeding. SuperFVa reversed bleeding induced by FXa inhibitors (rivaroxaban, apixaban), and the FIIa inhibitor dabigatran in BalbC mice. The blocking anti-protein C and APC [(A)PC] antibody SPC-54 also reduced FXa inhibitor induced bleeding similar to superFVa, whereas dabigatran-induced bleeding was not affected. This indicated that sufficient APC was generated to contribute to bleeding in the presence of FXa inhibitors, but not in the presence of dabigatran, suggesting that mechanisms contributing to bleeding differed for FXa and FIIa inhibitors. Despite different mechanisms contributing to bleeding, superFVa effectively reduced bleeding for all DOACs, indicating the versatility of superFVa’s properties that contribute to its universal prohemostatic effects for DOAC associated bleeding. Supported by thrombin generation assays on endothelial cells in normal plasma spiked with DOACs and patient plasma anticoagulated with DOACs, 3 complementary mechanisms were identified by which superFVa achieved DOAC class-independent prohemostatic efficiency. These mechanisms are resistance to inactivation by APC, overcoming the FV activation threshold, and maximizing the efficiency of the prothrombinase complex when the available FXa is increased by FVIIa-based prohemostatics. In summary, it is this versatility of superFVa that delineates it from other prohemostatic agents as a promising class-independent rescue agent in bleeding situations associated with DOACs.


Blood ◽  
2020 ◽  
Author(s):  
Simon Timothy Abrams ◽  
Dunhao Su ◽  
Yasmina Sahraoui ◽  
Ziqi Lin ◽  
Zhenxing Cheng ◽  
...  

Thrombin generation is pivotal to both physiological blood clot formation and pathological development of disseminated intravascular coagulation (DIC). In critical illness, extensive cell damage can release histones into the circulation, which can increase thrombin generation and cause DIC, but the molecular mechanism is not clear. Typically, thrombin is generated by the prothrombinase complex, comprising activated factor X (FXa), activated co-factor V (FVa) and phospholipids to cleave prothrombin in the presence of calcium. In this study, we found that in the presence of extracellular histones, an alternative prothrombinase could form without FVa and phospholipids. Histones directly bind to prothrombin fragments F1 and F2 specifically, to facilitate FXa cleavage of prothrombin to release active thrombin, unlike FVa which requires phospholipid surfaces to anchor the classical prothrombinase complex. In vivo, histone infusion into mice induced DIC, which was significantly abrogated when prothrombin fragments F1+F2 were infused prior to histones, to act as decoy. In a cohort of intensive care unit (ICU) patients with sepsis (n=144), circulating histone levels were significantly elevated in patients with DIC. These data suggest that histone-induced alternative prothrombinase without phospholipid anchorage may disseminate intravascular coagulation, and reveal a new molecular mechanism of thrombin generation and DIC development. In addition, histones significantly reduced the requirement for FXa in the coagulation cascade to enable clot formation in Factor VIII and IX-deficient plasma, as well as in Factor VIII-deficient mice. In conclusion, this study highlights a novel mechanism in coagulation with therapeutic potential in both targeting systemic coagulation activation as well as in correcting coagulation factor deficiency.


Sign in / Sign up

Export Citation Format

Share Document