Efficient Barrier Protective Signaling by Activated Protein C Is Mechanistically Linked to Protein C Activation on Endothelial Cells.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 28-28
Author(s):  
Clemens Feistritzer ◽  
Laurent O. Mosnier ◽  
Enrico Di Cera ◽  
John H. Griffin ◽  
Matthias Riewald

Abstract Protein C (PC) is activated by thrombomodulin-bound thrombin on the endothelial cell surface and activated protein C (APC) inhibits blood coagulation in a negative feedback loop. Endothelial PC receptor (EPCR) can bind PC/APC and activation of EPCR-bound PC is enhanced. Exogenous APC has barrier protective effects on endothelial cells that depend on EPCR binding and protease activated receptor-1 (PAR1) cleavage and that may contribute to the anti-inflammatory effects of APC. Plasma APC concentrations in vivo are low compared to the substrate PC and in order to induce protective signaling exogenous APC has to compete with PC for EPCR binding. In this study we investigated whether the endogenous PC activation pathway may be linked to efficient protective responses analyzing endothelial barrier permeability in a dual chamber system. When endothelial EA.hy926 cells were incubated for 3 h in the presence of 80 nM purified PC and different concentrations of thrombin a dose-dependent linear increase of APC activity in the cell medium was observed over time. APC generation was detectable upon incubation with 20 pM thrombin or higher and a significant barrier protective response to 20 pM thrombin was found only in the presence of PC. 40 pM thrombin enhanced barrier integrity in the presence and absence of PC, consistent with our previous results. To exclude direct thrombin effects on endothelial permeability and to compare protective effects of exogenous and endogenously generated APC, we used the anticoagulant double mutant thrombin W215A/E217A (WE). WE was about 10 times less active than wildtype thrombin for PC activation in our system. However, PAR1-dependent induction of MAP kinase phosphorylation required more than 1000-fold higher concentrations of the thrombin mutant. Thus, 1–10 nM WE leads to APC generation without directly inducing PAR1-dependent signaling. When cells were incubated with various concentrations of exogenous APC or WE+80 nM PC, barrier protective effects of 5 nM exogenous APC and 2 nM WE+80 nM PC (1.3 nM APC generated after 3 h) were similar. Because APC is generated at a constant rate during the incubation period, the average concentration of generated APC in the cell medium was only about 0.65 nM, suggesting that signaling by endogenously generated APC was significantly more efficient. To conclusively demonstrate that protective effects in response to WE are mediated by APC generation, we used recombinant zymogen wildtype PC and a PC variant with a substitution of the active site serine with alanine (PC S360A). Cells were incubated with control or 80 nM wildtype PC and PC S360A, in the presence or absence of WE (4 nM) and exogenous APC (3.3 nM). WE induced protective signaling only in the presence of wildtype PC but not PC S360A. Barrier protective effects of exogenous APC were blocked by both wildtype PC and PC S360A, consistent with their expected role as competitive inhibitors for APC binding to EPCR. These data demonstrate that efficient barrier enhancement by APC is indeed mechanistically coupled to the PC activation pathway. Signaling by endogenously generated APC may play an important role in the regulation of inflammation.

Blood ◽  
2012 ◽  
Vol 120 (26) ◽  
pp. 5237-5246 ◽  
Author(s):  
Laurent O. Mosnier ◽  
Ranjeet K. Sinha ◽  
Laurent Burnier ◽  
Eveline A. Bouwens ◽  
John H. Griffin

Abstract Activated protein C (APC) exerts endothelial cytoprotective actions that require protease-activated receptor 1 (PAR1), whereas thrombin acting via PAR1 causes endothelial disruptive, proinflammatory actions. APC's activities, but not thrombin's, require PAR1 located in caveolae. PAR1 is a biased 7-transmembrane receptor because G proteins mediate thrombin's signaling, whereas β-arrestin 2 mediates APC's signaling. Here we elucidate novel mechanisms for APC's initiation of signaling. Biochemical studies of APC's protease specificity showed that APC cleaved PAR1 sequences at both Arg41 and Arg46. That PAR1 cleavage at Arg46 can occur on cells was supported by APC's cleavage of N-terminal-SEAP-tagged R41Q-PAR1 but not R41Q/R46Q-PAR1 mutants transfected into cells and by anti-PAR1 epitope mapping of APC-treated endothelial cells. A synthetic peptide composing PAR1 residues 47-66, TR47, stimulated protective signaling in endothelial cells as reflected in Akt and glycogen synthase kinase 3β phosphorylation, Ras-related C3 botulinum toxin substrate 1 activation, and barrier stabilization effects. In mice, the TR47 peptide reduced VEGF-induced vascular leakage. These in vitro and in vivo data imply that the novel PAR1 N-terminus beginning at residue Asn47, which is generated by APC cleavage at Arg46, mediates APC's cytoprotective signaling and that this unique APC-generated N-terminal peptide tail is a novel biased agonist for PAR1.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3364-3364
Author(s):  
Laurent Burnier ◽  
Jose A. Fernandez ◽  
John H. Griffin

Abstract Abstract 3364 Activated Protein C (APC) is a circulating serine protease with two major roles to maintain homeostasis. APC acts via multiple receptors, including protease-activated receptor 1, to exert anti-apoptotic and vascular integrity protective effects. A number of protective effects of pharmacologic APC are reported in the literature, with beneficial effects in kidney, brain and irradiation-induced pathologies. The functional protections of the endogenous protein C systems are challenging to study. A better understanding of its mechanisms at different cellular levels and in different tissues is needed to enable evaluation of its further usage in humans. To that end, new tools should be considered to increase our knowledge. To help evaluate the endogenous murine protein C system and to be able to neutralize pharmacologic APC, we have made and characterized a novel rat monoclonal anti-mouse protein C antibody, SPC-54, that almost completely ablates in vitro and in vivo APC activity. In solid phase binding assays, the Kd of SPC-54 for APC was about 8 nM. In biochemical assays, SPC-54 inhibited amidolytic activity of wild-type murine APC by > 95%. SPC-54 was similarly a potent inhibitor (> 90%) of the amidolytic activity of the 5A-APC mutant. IC50 value for wild-type APC and the 5A-APC mutant were comparable. SPC-54 was pre-incubated with APC, followed by the addition of a 20 fold molar excess of biotinylated FPR-chloromethylketone, quantification of biotinylation of APC was readily made by SDS-PAGE and Western blots using infrared-coupled streptavidin. SPC-54 blocked successfully active site titration of APC using this biotinylated active site titrant. These and other experiments suggest that the SPC-54 epitope is located in the vicinity of the active site, such that it blocks different small substrates from reaching the active site. When we performed thrombin generation assays using mouse platelet-poor plasma to check whether SPC-54 was a potent blocker of APC activity in plasma, we showed that SPC-54 neutralized almost completely exogenous APC anticoagulant activity in a dose-dependent manner. Using native polyacrylamide gel migration, Western immunoblotting and immuno-precipitation with protein G-agarose, we confirmed that SPC-54 was bound to protein C in plasma after infusing mice with SPC-54 (10 mg/kg). Moreover, using a modified ELISA that is capable to quantify the pool of activatable protein C, the plasma protein C activity level was considerably decreased (> 80%) in mice after a single injection of SPC-54 (10 mg/kg), and that this effect of neutralizing circulating protein C was sustained for at least 7 days. For in vivo proof of concept, we performed murine tissue factor-induced thromboembolism experiments. Results showed a severe decrease in survival of mice that were pre-infused with SPC-54 when compared to control (survival time of 7 min vs. 42.5 min respectively, P = 0.0016). Moreover, blood perfusion in lungs of mice infused with SPC-54 (10 mg/kg) was dramatically impaired (decrease of 54%, P < 0.0001) as revealed by infrared quantification of Evans Blue dye as marker of vascular perfusion. We also used endotoxemia murine models to assess effects of SPC-54. SPC-54 decreased survival after endotoxin challenge (25 mg/kg, LD50 dose) in mice infused with SPC-54 (10 mg/kg) at 7 hours after LPS. Mortality was 100% after 36 h in the SPC-54 group, whereas controls, which received either boiled SPC-54 antibodies or PBS vehicle, showed a mortality of about 50% (P < 0.001). In summary, SPC-54 is a potent rat monoclonal antibody that neutralizes murine APC activities in vitro and in vivo. Its characteristic ability to dampen the endogenous protein C/APC system is of value to understand better the role of the endogenous protein C system in murine injury models and also to neutralize pharmacologic murine APC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 146-151 ◽  
Author(s):  
Arne Slungaard ◽  
Jose A. Fernandez ◽  
John H. Griffin ◽  
Nigel S. Key ◽  
Janel R. Long ◽  
...  

Abstract Platelet factor 4 (PF4), an abundant platelet α-granule protein, accelerates in vitro generation of activated protein C (APC) by soluble thrombin/thrombomodulin (TM) complexes up to 25-fold. To test the hypothesis that PF4 similarly stimulates endothelium-associated TM, we assessed the influence of human PF4 on thrombin-dependent APC generation by cultured endothelial monolayers. APC generated in the presence of 1 to 100 μg PF4 was up to 5-fold higher than baseline for human umbilical vein endothelial cells, 10-fold higher for microvascular endothelial cells, and unaltered for blood outgrowth endothelial cells. In an in vivo model, cynomolgus monkeys (n = 6, each serving as its own control) were infused with either PF4 (7.5 mg/kg) or vehicle buffer, then with human thrombin (1.0 μg/kg/min) for 10 minutes. Circulating APC levels (baseline 3 ng/mL) peaked at 10 minutes, when PF4-treated and vehicle-treated animals had APC levels of 67 ± 5 ng/mL and 39 ± 2 ng/mL, respectively (P &lt; .001). The activated partial thromboplastin time (APTT; baseline, 28 seconds) increased maximally by 27 ± 6 seconds in PF4-treated animals and by 9 ± 1 seconds in control animals at 30 minutes (P &lt; .001). PF4-dependent increases in circulating APC and APTT persisted more than 2-fold greater than that of control's from 10 through 120 minutes (P ≤ .04). All APTT prolongations were essentially reversed by monoclonal antibody C3, which blocks APC activity. Thus, physiologically relevant concentrations of PF4 stimulate thrombin-dependent APC generation both in vitro by cultured endothelial cells and in vivo in a primate thrombin infusion model. These findings suggest that PF4 may play a previously unsuspected physiologic role in enhancing APC generation. (Blood. 2003;102:146-151)


Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 3909-3916 ◽  
Author(s):  
Jong-Sup Bae ◽  
Likui Yang ◽  
Chandrashekhara Manithody ◽  
Alireza R. Rezaie

AbstractRecent studies have indicated that activated protein C (APC) may exert its cytoprotective and anti-inflammatory activities through the endothelial protein C receptor (EPCR)-dependent cleavage of protease-activated receptor 1 (PAR-1) on vascular endothelial cells. Noting that (1) the activation of protein C on endothelial cells requires thrombin, (2) relative to APC, thrombin cleaves PAR-1 with approximately 3 to 4 orders of magnitude higher catalytic efficiency, and (3) PAR-1 is a target for the proinflammatory activity of thrombin, it is not understood how APC can elicit a protective signaling response through the cleavage of PAR-1 when thrombin is present. In this study, we demonstrate that EPCR is associated with caveolin-1 in lipid rafts of endothelial cells and that its occupancy by the γ-carboxyglutamic acid (Gla) domain of protein C/APC leads to its dissociation from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway through coupling of PAR-1 to the pertussis toxin–sensitive Gi-protein. Thus, when EPCR is bound by protein C, the PAR-1 cleavage-dependent protective signaling responses in endothelial cells can be mediated by either thrombin or APC. These results provide a new paradigm for understanding how PAR-1 and EPCR participate in protective signaling events in endothelial cells.


Blood ◽  
2002 ◽  
Vol 100 (2) ◽  
pp. 539-546 ◽  
Author(s):  
Julie A. Oliver ◽  
Dougald M. Monroe ◽  
Frank C. Church ◽  
Harold R. Roberts ◽  
Maureane Hoffman

Abstract The protein C/protein S system is known to regulate thrombin generation in vivo by cleaving factors Va and VIIIa. We have examined the activity of activated protein C in several tissue factor–initiated models of coagulation. We used 4 models: monocytes as the tissue factor source with platelets as the thrombin-generating surface; endothelial cells as the tissue factor source with platelets as the thrombin-generating surface; endothelial cells as both the tissue factor source and the thrombin-generating surface; and relipidated tissue factor with lipid vesicles providing the surface for thrombin generation. With the lipid surface, activated protein C dose-dependently reduced thrombin generation. Similarly, when endothelial cells provided the only surface for thrombin generation, activated protein C dose-dependently decreased thrombin generation significantly. By contrast, whenever platelets were present, activated protein C only minimally affected the amount of thrombin generated. When endothelial cells were the tissue factor source with platelets providing the surface for thrombin generation, activated protein C did increase the time until the burst of thrombin generation but had minimal effects on the total amount of thrombin generated. Activated protein C had essentially no effect on thrombin generation when monocytes were the tissue factor source with platelets providing the surface for thrombin generation. From the studies reported here, we conclude that in vivo, despite the important role of the protein C system in regulating thrombosis, activated protein C does not serve as a primary regulator of platelet-dependent thrombin generation.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1746-1746
Author(s):  
Alireza R. Rezaie ◽  
Jong-Sup Bae ◽  
Likui Yang ◽  
Chandrashekhara Manithody

Abstract It has been hypothesized that activated protein C (APC) exerts its cytoprotective and antiinflammatory activities through the endothelial protein C receptor (EPCR)-dependent cleavage of protease activated receptor 1 (PAR-1) on vascular endothelial cells. Noting that the activation of protein C on endothelial cells requires thrombin, relative to APC, thrombin cleaves PAR-1 with ∼3–4-orders of magnitude higher catalytic efficiency, and PAR-1 is a target for the proinflammatory activity of thrombin, it is not understood how APC can elicit a protective signaling response through the cleavage of PAR-1 when thrombin is present. In this study, we demonstrate that EPCR is associated with caveolin-1 in lipid rafts of endothelial cells and that its occupancy by the Gla-domain of protein C/APC leads to its dissociation from caveolin-1 and recruitment of PAR-1 to a protective signaling pathway through coupling of PAR-1 to the pertussis toxin sensitive Gi-protein. Thus, when EPCR is bound by protein C/APC, the PAR-1 cleavage-dependent protective signaling responses in endothelial cells can be mediated by either thrombin or APC. These results provide a new paradigm for understanding how PAR-1 and EPCR participate in protective signaling events in endothelial cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-44-SCI-44
Author(s):  
John H. Griffin ◽  
Laurent O. Mosnier

Abstract SCI-44 Plasma protein C is known for its mild deficiency linked to venous thrombosis risk and severe deficiency linked to neonatal purpura fulminans. Activated protein C (APC) exerts both anticoagulant activity via proteolytic inactivation of factors Va and VIIIa and cellular cytoprotective actions via direct initiation of cell signaling. Based on studies of engineered APC mutants and the use of genetically modified mice, APC’s cell signaling actions are thought to drive murine APC’s mortality reduction in sepsis models, neuroprotective actions in brain injury models, and nephroprotective effects in kidney injury models. These actions in vivo are generally suggested to involve multiple receptors (PAR1, endothelial protein C receptor [EPCR], PAR3, and CD11b), while in vitro studies implicate these receptors and potentially also other receptors (apoER2, β1 and β3 integrins, S1P1, and the angiopoietin/Tie-2 axis) for APC’s cellular effects. Crosstalk among these receptors may permit a timely integration of APC-induced signaling, which ultimately determines APC’s effects on a specific cell and organ. Central to many in vivo and in vitro published studies is the implication that APC provides beneficial effects via EPCR-dependent PAR1-dependent cell signaling. This central role for PAR1 poses the dilemma of how thrombin and APC can often seem to have opposing effects when activating PAR1. Microdomain-specific PAR1 signaling by APC versus thrombin may help explain some observations. Binding of protein C or APC to EPCR on endothelial cells appears to determine whether these proteins and PAR1 are or are not colocalized in microdomains with caveolin-1. APC’s activation of Rac1 via PAR1 requires EPCR and caveolin-1 whereas thrombin’s activation of RhoA via PAR1 is independent of EPCR and caveolin-1. We hypothesized that APC might cleave PAR1 not only at Arg41 but also at Arg46 with distinct consequences and that this could distinguish APC’s from thrombin’s signaling. We found that APC cleaved the PAR1 N-terminal synthetic TR33-66 peptide at Arg41 and also at another site distal from Arg41. Isolation of the novel proteolytic fragments and their MALDI-TOF analysis identified Arg46 as that cleavage site. When cells containing EPCR were transfected with secretable alkaline phosphatase (SEAP)-PAR1 wild type and mutant constructs, both thrombin and APC cleaved wt-PAR1 but not R41Q/R46Q-PAR1. As expected, thrombin also did not cleave R41A-PAR1 or R41Q-PAR1. But APC very efficiently cleaved both the R41A-PAR1 and the R41Q-PAR1 mutants. We tested a synthetic PAR1 analog peptide (Asn47-residue 66) to see if it could promote signaling. This PAR1 (47–66)-peptide increased Akt phosphorylation at Ser473 in endothelial cells over 30 minutes whereas neither a control scrambled sequence (47–66)-peptide nor a TRAP peptide had a similar effect. The PAR1 (47–66)-peptide, but the control scrambled sequence-peptide or TRAP, inhibited staurosporine-induced endothelial cell apoptosis. Thus, it appears that the new N-terminus generated by APC’s cleavage at Arg46 in PAR1 generates a novel tethered ligand, which could induce selective APC-like protective signaling. Hence, APC is capable of a unique, functionally significant cleavage of PAR1. Further in vitro and in vivo studies are needed to address a number of obvious questions. In summary, explanations for APC’s beneficial cellular cytoprotective effects may be found in its ability to signal via multiple receptors selectively located in different cell membrane microdomains and potentially also in its ability to activate PARs by cleavages at unique sites, which initiate unique signaling events on different cells in different organs. Disclosures: Griffin: ZZBiotech LLC: Consultancy, Membership on an entity’s Board of Directors or advisory committees; Scripps Research Institute: Employment, Patents & Royalties. Mosnier:Scripps Research institute: Employment, Patents & Royalties.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2334-2334
Author(s):  
Thomas J. Cramer ◽  
Ranjeet K. Sinha ◽  
John H. Griffin

Abstract In vivo and in vitro data in murine and baboon sepsis models have shown pathogenic effects of extracellular histones H3 and H4 in the circulation. The plasma serine protease, activated protein C (APC), is protective in these models by proteolysis of histones H3 and H4, and APC remarkably reduces mortality in these models. Histones H3 and H4 are also pathogenic in lung, liver, and kidney injury models. The function of extracellular histone H1, the linker histone between nucleosomes, has not been well investigated. Here we test the hypothesis that H1 can exert cytotoxic activity on lung epithelial cells and endothelial cells, and that H1 can affect endothelial cell barrier. Survival of lung epithelial (NCI H460) and endothelial (EA.hy926) cells was measured with an LDH (lactate dehydrogenase) release cytotoxicity assay in which LDH release follows loss of cell membrane integrity. Histone H1 (calf thymus-derived lysine-rich histone fraction) exhibited significant cytotoxicity on both lung epithelial and endothelial cells. Compared to other histone preparations (e.g., recombinant H2A, H2B, H3, and H4), H1 showed similar cytotoxicity on endothelial cells, whereas, on epithelial cells, H1 was more cytotoxic than other histones. Pre-incubation of all histones with plasma-derived human APC blunted their cytotoxic effects. Immunoblot analysis demonstrated site-specific, limited proteolysis of H1 and of other histones by APC, suggesting that APC protected the cells by cleaving H1 and other histones. When TransEndothelial Resistance (TER) measurements were performed on endothelial cells with the iCelligence system, the results showed that H1 histones exerted complex effects on cells, including a significant reduction in transcellular impedance observed at 10-20 hr post-treatment, implying disruption of the endothelium by H1. Studies showed that APC protected endothelial cells from this H1-induced decrease in TER. For example, the normalized cell index value for endothelial cells in TER assays was reduced by 10%, 16%, and 30% following treatment with 100, 200, and 400 µg/mL histone H1, respectively, and APC potently blunted this H1-induced reduction of the normalized cell index in TER assays. These experiments show that histone H1 has potent cytotoxic effects on endothelial and epithelial cells, as previously observed by others for histones H3 and H4, and that APC can prevent these effects. Future work should identify cell surface receptors and signaling mechanisms for H1 cytotoxic effects that may involve toll-like receptors. Our findings also suggest that histone H1 could be targeted for therapeutic purposes. Identification of the surface residues of APC that interact with H1 or other histones may help provide APC mutants defective in histone cleavage that could be used for in vivo proof of concept studies. Exosites around the active site of APC can directly interact with its substrates and influence APC activity by determining APC’s affinity for substrates. A recombinant APC variant with Lys191-193 mutated to Ala (3K3A-APC) appeared to have enhanced cytoprotective effects in H1-mediated cytotoxicity assays whereas a variant of APC with residues Glu330 and Glu333 mutated to Ala (E330A/E333A-APC) showed reduced protection against H1-mediated cytotoxicity. Immunoblot analysis of reaction mixtures showed reduced cleavage of H1 by the E330A/E333A-APC mutant compared to normal APC, suggesting that residues Glu330 and Glu333 contribute to affinity for highly positively charged histones like H1. In summary, data show that histone H1 exerts cytotoxic effects on endothelial and epithelial cells and that a negatively charged exosite on APC, which includes Glu330 and Glu333, contributes to APC’s ability to proteolyze H1 and reduce its cytotoxicity. Disclosures: No relevant conflicts of interest to declare.


2006 ◽  
Vol 281 (29) ◽  
pp. 20077-20084 ◽  
Author(s):  
Clemens Feistritzer ◽  
Reto A. Schuepbach ◽  
Laurent O. Mosnier ◽  
Leslie A. Bush ◽  
Enrico Di Cera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document