Hematopoietic Stem Cell Gene Therapy with Lentiviral Vector in X-Linked Adrenoleukodystrophy

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 163-163
Author(s):  
Patrick Aubourg ◽  
Salima Hacein-Bey-Abina ◽  
Cynthia Bartholomae ◽  
Manfred Schmidt ◽  
Ina Kutschera ◽  
...  

Abstract Abstract 163FN2 The most severe form of X-linked adrenoleukodystrophy (ALD) is characterized by rapidly progressive and lethal cerebral demyelination in childhood. The progression of cerebral demyelination of ALD can be arrested by allogeneic hematopoietic stem cell (HSC) transplantation (HCT) within 12–18 months, provided the procedure is performed at an early stage of the disease. The long term beneficial effects of HCT in ALD are likely due to the progressive turn-over of brain microglia that are derived from myeloid progenitors in the bone-marrow. Despite the increased availability of cord blood, not all boys with cerebral ALD and who are candidate for HCT have a suitable HLA-matched donor. In addition, allogeneic HCT remains associated with significant mortality risk. In late 2009, we reported that HSC gene therapy with lentiviral vector was able to arrest the progression of cerebral ALD in two boys who have no HLA-matched donor to perform HCT. ALD protein expression in myeloid and lymphoid lineages as well as the identification of identical lentiviral insertion sites in myeloid and lymphoid lineages strongly suggested that multi-potent long-term repopulating hematopoietic cells were transduced. In those 2 treated patients, hematopoiesis has remained polyclonal without evidence of clonal skewing or dominance up to the last follow-up. Data on clinical efficacy, gene marking and lentiviral integration studies with a longer follow-up (4 years ½) will be presented. HSC gene therapy however failed to arrest the progression of cerebral ALD in a third treated ALD patient, 36 months after gene therapy. Hematopoiesis remained also polyclonal in this patient and biological data that could explain failure of gene therapy in this patient will be presented. At last, data on a fourth patient who has been treated more recently (12 months) by HSC gene therapy will also be presented. Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Author(s):  
Pierre BOUGNERES ◽  
Salima Hacein-Bey-Abina ◽  
Ivan Labik ◽  
Catherine ADAMSBAUM ◽  
CLEMENCE CASTAIGNEDE ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 259-259 ◽  
Author(s):  
Francesca Ferrua ◽  
Maria Pia Cicalese ◽  
Stefania Galimberti ◽  
Samantha Scaramuzza ◽  
Stefania Giannelli ◽  
...  

Abstract Wiskott-Aldrich Syndrome (WAS) is an X-linked primary immunodeficiency characterized by thrombocytopenia, recurrent infections, eczema, autoimmunity and increased susceptibility to malignancies. Allogeneic hematopoietic stem cell transplantation (HSCT) is a recognized curative treatment for WAS, but is still associated with transplant-related complications and long-term morbidity, particularly in the absence of fully matched donors. In April 2010, we initiated a phase I/II clinical trial with hematopoietic stem cell (HSC) gene therapy (GT) for WAS. The investigational medicinal product (IMP) consists of autologous CD34+ HSC engineered with a lentiviral vector (LV) driving the expression of WAS cDNA from an endogenous 1.6 kb human WAS promoter (LV-WAS), infused after a reduced intensity conditioning (RIC) based on anti-CD20 mAb, targeted busulfan and fludarabine. We previously reported early follow up (FU) results from the first 3 patients (Aiuti et al., Science 2013). Seven patients (Zhu score ≥3) have now been treated at a median age of 1.9 years (1.1 - 11.1). As of May 2015, all patients are alive with a median FU of 3.2 years (0.7 - 5.0). CD34+ cell source was bone marrow (BM) (n=5), mobilized peripheral blood (MPB) (n=1) or both (n=1). IMP dose ranged between 7.0 and 14.1 x106 CD34+/kg, containing on average 94.4 ± 3.5% transduced clonogenic progenitors and a mean vector copy number (VCN)/genome in bulk CD34+ cells of 2.7 ± 0.8. No adverse reactions were observed after IMP infusion and RIC was well tolerated. Median duration of severe neutropenia was 19 days; granulocyte-colony stimulating factor was administered to 1 patient. In the first 6 treated patients with FU >2 years, we observed robust and persistent engraftment of gene corrected cells. At the most recent FU, transduced BM progenitors ranged between 20.7 and 59.7%, and LV-transduced cells were detected in multiple lineages, including PB granulocytes (VCN 0.34 - 0.93) and lymphocytes (VCN 1.18 - 2.73). WAS protein expression, measured by flow-cytometry, was detected in the majority of PB platelets [mean ± standard deviation (SD), 71.4 ± 14.0%], monocytes (63.3 ± 18.5%) and lymphocytes (78.9 ± 14.9%). Lymphocyte subset counts were normal in most patients and proliferative response to anti-CD3 mAb was in the normal range in all 6 patients. After immune reconstitution, a marked reduction in the annualized estimated rate of severe infections was observed, as compared with baseline (figure 1A). The first 6 treated patients discontinued anti-infective prophylaxis and no longer require a protected environment. Four patients stopped immunoglobulin supplementation and 2 of them developed specific antibodies after vaccination. Eczema resolved in 4 patients and remains mild in 2. No clinical manifestations of autoimmunity were observed ≥1 year after GT in accordance with improved B-cell development and decreased autoantibody production. All patients became platelet transfusion independent at a median of 4 months after GT (range: 1.0 - 8.7). Mean platelet counts progressively increased after treatment (mean ± SD: before GT, 13.4 ± 7.8 x109/l; 24-30 month FU, 45.8 ± 22.0 x109/l; 36-42 month FU, 57.0 ± 18.7 x109/l). The frequency and the severity of bleeding events decreased after the 1st year of FU. No severe bleedings were recorded after treatment (figure 1B). Quality of life improved in all patients after GT. From the 2nd year of FU, the number of hospitalizations for infections decreased and no hospitalizations due to bleeding were observed after treatment. The seventh patient treated, who received MPB derived CD34+ cells only, showed the fastest platelet recovery with the highest level of transduced myeloid cell engraftment, and is clinically well. No Serious Adverse Events (SAE) related to the IMP were observed. The most frequent SAE were related to infections (85%), occuring mainly during the 1st year of FU. Importantly, no evidence of abnormal clonal proliferations emerged after GT and the LV integration profile show a polyclonal pattern, with no skewing for proto-oncogenes. In conclusion, this updated report in 7 WAS patients show that GT is well tolerated and leads to a sustained clinical benefit. The high level of gene transfer obtained with LV-WAS results in robust engraftment of transduced HSC, even when combined with RIC. Prolonged FU will provide additional information on the long-term safety and clinical efficacy of this treatment. Figure 1. Figure 1. Disclosures Villa: Fondazione Telethon: Research Funding. Dott:GlaxoSmithKline: Consultancy. van Rossem:GlaxoSmithKline: Employment. Naldini:Salk Institute: Patents & Royalties: Lentiviral vectors; San Raffaele Telethon Institute: Patents & Royalties: Lentiviral vector technology; GlaxoSmithKline: Other: GSK licensed gene therapies developed at my Institute and the Institute receives milestone payments; Sangamo Biosciences: Research Funding; Biogen: Research Funding; Genenta Sciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Aiuti:GlaxoSmithKline (GSK): Other: PI of clinical trial which is financially sponsored by GSK; Fondazione Telethon: Research Funding.


2021 ◽  
Vol 132 (2) ◽  
pp. S107
Author(s):  
Niek P. van Til ◽  
Yildirim Dogan ◽  
Cecilia Barese ◽  
Zeenath Unnisa ◽  
Swaroopa Guda ◽  
...  

2011 ◽  
Vol 5 (6) ◽  
pp. 543-549 ◽  
Author(s):  
Daniel W. Hommes ◽  
Marjolijn Duijvestein ◽  
Zuzana Zelinkova ◽  
Pieter C.F. Stokkers ◽  
Maartje Holsbergen-de Ley ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4302-4302
Author(s):  
Anna E Beaudin ◽  
Scott W. Boyer ◽  
Gloria Hernandez ◽  
Camilla E Forsberg

Abstract The generation of innate-like immune cells distinguishes fetal hematopoiesis from adult hematopoiesis, but the cellular mechanisms underlying differential cell production during development remain to be established. Specifically, whether differential lymphoid output arises as a consequence of discrete hematopoietic stem cell (HSC) populations present during development or whether the fetal/neonatal microenvironment is required for their production remains to be established. We recently established a Flk2/Flt3 lineage tracing mouse model wherein Flk2-driven expression of Cre recombinase results in the irreversible switching of a ubiquitous dual-color reporter from Tomato to GFP expression. Because the switch from Tom to GFP expression in this model involves an irreversible genetic excision of the Tomato gene, a GFP+ cell can never give rise to Tom+ progeny. Using this model, we have definitively demonstrated that all functional, adult HSC remain Tomato+ and therefore that all developmental precursors of adult HSC lack a history of Flk2 expression. In contrast, adoptive transfer experiments of Tom+ and GFP+ fetal liver Lin-cKit+Sca1+ (KLS) fractions demonstrated that both Tom+ and GFP+ fetal HSC support serial, long-term multilineage reconstitution (LTR) in irradiated adult recipients. We have therefore identified a novel, developmentally restricted HSC that supports long-term multilineage reconstitution upon transplantation into an adult recipient but does not normally persist into adulthood. Developmentally-restricted GFP+ HSC display greater lymphoid potential, and regenerated both innate-like B-1 lymphocytes and Vg3-expressing T lymphocytes to a greater extent than coexisting Tom+ FL and adult HSC. Interestingly, whereas developmental regulation of fetal-specific B-cell subsets appears to be regulated cell-instrinsically, as fetal HSC generated more innate-like B-cells than adult HSC even within an adult environment, T-cell development may be regulated both cell intrinsically and extrinsically, as both the cell-of-origin and the fetal microenvironment regulated the generation of innate-like T-cells. Our results provide direct evidence for a developmentally restricted HSC that gives rise to a layered immune system and describes a novel mechanism underlying the source of developmental hematopoietic waves. As early lymphoid cells play essential roles in establishing self-recognition and tolerance, these findings are critical for understanding the development of autoimmune diseases, allergies, and tolerance induction upon organ transplantation. Furthermore, by uncoupling self-renewal capacity in situ with that observed upon transplantation, our data suggests that transplantation- and/or irradiation-induced cues may allow for the engraftment of developmental HSC populations that do not normally persist in situ. As LTR upon transplantation has served as the prevailing definition of adult HSC origin during development, our data challenge the current conceptual framework of adult HSC origin. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document