Nilotinib Versus Imatinib in Patients (pts) with Newly Diagnosed Philadelphia Chromosome-Positive (Ph+) Chronic Myeloid Leukemia in Chronic Phase (CML-CP): ENESTnd 36-Month (mo) Follow-up

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 452-452 ◽  
Author(s):  
Giuseppe Saglio ◽  
Philipp D. LeCoutre ◽  
Ricardo Pasquini ◽  
Saengsuree Jootar ◽  
Hirohisa Nakamae ◽  
...  

Abstract Abstract 452FN2 Background: In ENESTnd, pts treated with nilotinib demonstrated higher and faster rates of major molecular response (MMR, ≤ 0.1% BCR-ABLIS), deeper molecular response (MR4, ≤ 0.01%IS and MR4.5, ≤ 0.0032%IS), and complete cytogenetic responses (CCyR) along with significantly lower rates of progression to AP/BC and fewer CML-related deaths compared with imatinib by 12 and 24 mo. Here, we report data with a minimum follow-up of 24 mo; however, efficacy and safety data based on considerably longer follow-up of ≥ 36 mo will be presented. As demonstrated in IRIS and other imatinib trials, most pts who progress on imatinib do so within the first 3 years of therapy. Thus, this 36-mo update of ENESTnd will be important to further verify the benefits of nilotinib in newly-diagnosed pts. Methods: 846 adult pts with newly-diagnosed Ph+ CML-CP were randomized to nilotinib 300 mg twice daily (BID) (n = 282), nilotinib 400 mg BID (n = 281), or imatinib 400 mg once daily (QD) (n = 283). MMR, MR4, MR4.5, time to progression to AP/BC on treatment, progression-free survival (PFS) on treatment, and overall survival (OS) were evaluated. Results: By 24 mo, both doses of nilotinib demonstrated significantly higher rates of MMR, MR4, and MR4.5 vs imatinib (Table). Nilotinib-treated pts achieved median BCR-ABLIS levels of 0.09% (300 mg BID) and 0.10% (400 mg BID) by 12 mo, while this level of reduction was not observed before 24 mo on imatinib. More pts with CCyR achieved MMR at 12 and 24 mo with either dose of nilotinib vs imatinib (Table). Regardless of Sokal risk, rates of MMR and MR4.5 were higher for nilotinib at both doses vs imatinib (Table). Progression to AP/BC (excluding clonal evolution [CE]) on treatment was significantly lower for nilotinib vs imatinib (2 pts and 3 pts with nilotinib 300 mg BID [P = .0059] and 400 mg BID [P =.0196]), respectively vs 12 pts with imatinib). After achieving CCyR, 4 pts treated with imatinib progressed to AP/BC and 2 pts treated with nilotinib 400 mg BID progressed after achieving both CCyR and MMR (1 also achieved MR4). No pt who achieved MR4.5 progressed at any time. All but 1 pt who progressed to AP/BC on treatment were in the intermediate and high Sokal risk groups; 1 pt treated with nilotinib 400 mg BID progressed in the low Sokal risk group who had an E255V mutation at progression. When considering progression events of pts after discontinuation of treatment, an additional 7, 2, and 6 events (excluding CE) were observed with nilotinib 300 mg BID, nilotinib 400 mg BID and imatinib, respectively. Twice as many pts had emergent mutations on imatinib (n = 20) vs nilotinib (n = 10 on 300 mg BID; n = 8 on 400 mg BID). At 24 mo, OS remained similar in all groups, but there were fewer CML-related deaths in both nilotinib 300 mg BID (5 pts) and nilotinib 400 mg BID (3 pts) arms vs imatinib (10 pts). Both drugs were well tolerated and few new adverse events (AEs) and lab abnormalities were observed between 12- and 24-mo of follow-up. Nilotinib 300 mg BID had the fewest discontinuations due to AEs/lab abnormalities (9% vs 13% and 10% with nilotinib 400 mg BID and imatinib, respectively). Conclusions: With a minimum follow-up of 24 mo, nilotinib continued to demonstrate superiority vs imatinib with faster and deeper molecular responses and a significantly decreased risk of progression. These data support the use of nilotinib as a standard of care option in newly-diagnosed adult pts with Ph+ CML-CP. Disclosures: Saglio: Novartis Pharmaceutical: Consultancy, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Speakers Bureau; Pfizer: Consultancy. Off Label Use: Nilotinib is a safe and effective treatment for patients with CML. LeCoutre:Novartis: Honoraria, Research Funding, Speakers Bureau; Bristol Myers Squibb: Honoraria. Pasquini:Novartis: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bristol Myers Squibb: Speakers Bureau. Nakamae:Novartis: Consultancy, Research Funding, Speakers Bureau; BMS: Consultancy, Research Funding, Speakers Bureau. Flinn:nOVARTIS: Research Funding. Hochhaus:Novartis Pharmaceutical: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding. Hughes:Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees. Larson:Novartis Pharmaceuticals: Consultancy, Honoraria, Research Funding. Hoenekopp:Novartis Pharmaceutical: Employment, Equity Ownership. Gallagher:Novartis: Employment. Yu:Novartis: Employment, Equity Ownership. Blakesley:Novartis Pharmaceutical: Employment. Kim:BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding. Kantarjian:Novartis: Consultancy; Novartis: Research Funding; Pfizer: Research Funding; BMS: Research Funding.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 4229-4229
Author(s):  
Jatin J. Shah ◽  
Rafat Abonour ◽  
Mohit Narang ◽  
Jayesh Mehta ◽  
Howard R. Terebelo ◽  
...  

Abstract Introduction: Triplet therapies are used for treatment (Tx) of both transplant-eligible and -ineligible patients (pts) with newly diagnosed multiple myeloma (NDMM). Actual patterns and outcomes of Tx are not fully understood. Connect MM® is the first and largest multicenter, US-based, prospective observational cohort study designed to characterize Tx patterns and outcomes for pts with NDMM. This analysis describes demographic and disease characteristics of pts who received triplet Tx as an induction regimen and for whom transplant was or was not intended. The analysis explores the relationship of these factors with overall survival (OS) and other efficacy endpoints. Patients and Methods: Pts aged ≥ 18 y with NDMM within 60 days of diagnosis were eligible for enrollment regardless of disease severity, medical history, or comorbidities. Data including transplant intent (yes/no) was collected at baseline; follow-up data was collected quarterly thereafter. Based on the initial intent, 2 groups were identified: patients with intent to transplant who received transplant (TT) and pts with no intent to transplant who did not receive a transplant (NT). Triplet Tx was defined as the combination of ≥ 3 concurrent therapeutic agents in the first course of Tx (within 56 days of study entry). KM analysis adjusted for age was conducted for OS. Because decisions on use of transplant and triplet therapy are influenced by multiple factors, a multivariable Cox regression analysis was performed to evaluate the contribution of the triplet therapy (yes/no) to OS and was adjusted for other variables, including age, comorbidities, and ISS staging. Results: Between September 2009 and December 2011, 1493 pts were enrolled. This analysis was on 1436 pts: 650 pts with transplant intent and 786 pts without transplant intent. The data cutoff date was November 30, 2014, and the median follow-up for overall survival (OS) was 33.8 mos. Of pts with transplant intent, 451 (69%) received transplant (TT) and 199 (31%) did not. Of pts without transplant intent, 62 (8%) received transplant and 724 (92%) did not (NT). The abstract focuses on TT and NT groups only. NT pts tended to be older and have more advanced ISS staging and higher β2-microglobulin levels than TT pts (Table). The most common triplet regimen given during the first course treatment (within 56 days) was lenalidomide, bortezomib, and dexamethasone (RVd). RVd was administered to 34% of the NT pts (76/225) and 59% of the TT pts (152/257). The most common non-triplet regimen was bortezomib and dexamethasone (Vd), which was given to 31% of NT pts (156/499) and 38% of TT pts (73/194). Within the NT group, pts given triplet Tx had a lower risk of death than those who did not receive triplet Tx (P = .0013). The multivariable analysis found triplet Tx to be associated with a 36% reduced risk of death (hazard ratio [HR] = 0.64 [95% CI, 0.50-0.82]; P = .001). ISS disease stage (HR = 1.43 [95% CI, 1.21-1.69]; P < .001) and history of diabetes (HR = 1.38 [95% CI, 1.08-1.78]; P = .012) were negative prognostic factors for OS. Within the TT group, pts who received triplet Tx did not attain an OS benefit (P = .8993), and no baseline characteristics were significantly associated with OS. These results may be limited by other factors not considered that may have influenced physicians' choice of treatment, including the use of maintenance therapy and a short follow-up period of 33.8 months. Conclusions: Triplet Tx as a first regimen is associated with longer OS in pts without transplant intent who did not receive a transplant. RVd and Vd were the most common first Tx regimens, respectively. Continued follow-up of these pts and enrollment of an additional cohort will provide additional data with mature follow-up. Table 1. Table 1. Disclosures Shah: Bristol-Myers Squibb: Research Funding; Array: Research Funding; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Onyx: Membership on an entity's Board of Directors or advisory committees, Research Funding; Celgene: Membership on an entity's Board of Directors or advisory committees, Research Funding; Millenium: Research Funding; Merck: Membership on an entity's Board of Directors or advisory committees. Abonour:Celgene: Research Funding, Speakers Bureau. Narang:Celgene: Speakers Bureau. Mehta:Celgene Corporation: Speakers Bureau. Terebelo:Millenium: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Pharmacylics: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Gasparetto:Celgene Corporation: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Millennium: Honoraria, Other: Export Board Committee, Speakers Bureau. Toomey:Celgene: Consultancy. Hardin:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees. Srinivasan:Celgene Corporation: Employment, Equity Ownership. Larkins:Celgene Corporation: Employment, Equity Ownership. Nagarwala:Celgene Corporation: Employment, Equity Ownership. Rifkin:Onyx Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees; Millennium Pharmaceuticals, Inc., Cambridge, MA, USA, a wholly owned subsidiary of Takeda Pharmaceutical Company Limited: Consultancy, Membership on an entity's Board of Directors or advisory committees; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 679-679 ◽  
Author(s):  
Giovanni Martinelli ◽  
Hervé Dombret ◽  
Patrice Chevallier ◽  
Oliver G. Ottmann ◽  
Nicola Goekbuget ◽  
...  

Abstract Introduction. Prognosis of patients (pts) with R/R Philadelphia chromosome-positive (Ph+) ALL is dismal despite the introduction of tyrosine kinase inhibitors (TKI) which may be used as single agents or in combination regimens. Blinatumomab is a bispecific T-cell engaging (BiTE®) antibody construct that has shown antileukemic activity. Among adults with R/R Ph-negative ALL receiving blinatumomab, 43% achieved complete remission (CR) or CR with partial hematologic recovery (CRh) during the first two cycles (Topp MS et al. Lancet Oncol 2015;16:57). We evaluated the efficacy and tolerability of blinatumomab in pts with R/R Ph+ ALL who progressed after or were intolerant to a 2nd or later (2+) generation TKI. Methods. Eligible adult pts (≥18 years) had Ph+ B-precursor ALL and had relapsed after or were refractory to at least one 2+ generation TKI; or were intolerant to 2+ generation TKI and intolerant or refractory to imatinib. All pts had to have >5% blasts in the bone marrow and Eastern Cooperative Oncology Group performance status ≤ 2. Blinatumomab was dosed by continuous IV infusion (4 weeks on/2 weeks off) for up to 5 cycles (9 μg/d on days 1-7 in cycle 1, and 28 μg/d thereafter). The primary endpoint was CR or CRh during the first two cycles; minimal residual disease (MRD) response based on RT-PCR amplification of BCR-ABL per central laboratory, relapse-free survival (RFS), overall survival (OS), and allogeneic hematopoietic stem cell transplant (alloHSCT) rate were key secondary endpoints. Complete MRD response was defined as no RT-PCR amplification of BCR-ABL at a sensitivity of 10-5. Results. Of 45 treated pts, 44 were resistant to 2+ generation TKI; one patient was resistant to imatinib and never exposed to 2+ generation TKI (protocol deviation). 53% of pts were men. Median (range) age was 55 (23-78) years (≥65 years, 27%). Ten pts (22%) had a BCR-ABL gene with T315I mutation. All pts had received prior TKI (dasatinib, 87%; ponatinib, 51%; imatinib, 56%; nilotinib, 36%; bosutinib, 2%), with 60% having received ≥ 2 prior 2+ generation TKI; most pts (96%) had received prior chemotherapy. 38% of pts had ≥ 2 prior relapses and 44% had prior alloHSCT. Efficacy outcomes for key endpoints are shown in the table. 16 pts achieved CR/CRh during the first two cycles for a response rate of 36% (95% CI: 22%, 51%); of those, 14 pts achieved CR, most of them (10/14, 71%) in cycle 1. The patient who never received 2+ generation TKI did not respond to treatment. 12 of the 14 pts (86%) with CR and two of the two pts with CRh achieved a complete MRD response. Among the 10 pts with T315I mutation, four achieved CR/CRh; all four also achieved a complete MRD response. Eight CR/CRh responders (50%) relapsed, three during treatment (including two with CR who did not achieve complete MRD response). One patient died in CR post alloHSCT. Median (95% CI) RFS was 6.7 (4.4, not estimable) months (median follow-up, 9.0 months); median OS was 7.1 (5.6, not estimable) months (median follow-up, 8.8 months). Patient incidence of grade ≥ 3 treatment-emergent adverse events (AEs) was 82%, most commonly febrile neutropenia (27%), thrombocytopenia (22%), anemia (16%), and pyrexia (11%). Five pts had fatal AEs; one (septic shock) was considered treatment-related by the investigator. Three pts discontinued because of AEs. Cytokine release syndrome (CRS) occurred in three pts (all grade 1 or 2). 21 pts (47%) had neurologic events (paraesthesia, 13%; confusional state, 11%; dizziness, 9%; tremor, 9%); three pts had grade 3 neurologic events (aphasia, hemiplegia; and depressed level of consciousness and nervous system disorder), one of which (aphasia) required treatment interruption. Conclusion. In this population of pts with R/R Ph+ ALL who have very poor prognosis after failure of 2+ generation TKI therapy, treatment with CD19-targeted immunotherapy blinatumomab as single agent showed antileukemic activity. AEs were consistent with those previously reported for pts with R/R Ph-negative ALL treated with blinatumomab. Table 1. Table 1. Disclosures Martinelli: Novartis: Speakers Bureau; BMS: Speakers Bureau; Pfizer: Consultancy, Speakers Bureau; ARIAD: Consultancy; Roche: Consultancy; MSD: Consultancy. Dombret:Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Ottmann:Astra Zeneca: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Ariad: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees. Goekbuget:Bayer: Equity Ownership; Eusapharma/Jazz: Consultancy, Honoraria, Research Funding; Erytech: Consultancy; Pfizer: Consultancy, Honoraria, Research Funding; Medac: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Mundipharma: Consultancy, Honoraria, Research Funding; SigmaTau: Consultancy, Honoraria, Research Funding; Kite: Consultancy; Gilead Sciences: Consultancy; Sanofi: Equity Ownership; Amgen: Consultancy, Honoraria, Research Funding; GlaxoSmithKline: Honoraria, Research Funding; Bristol-Myers Squibb: Honoraria. Topp:Astra: Consultancy; Regeneron: Consultancy; Affimed: Consultancy, Research Funding; Roche: Consultancy, Other: Travel Support; Jazz: Consultancy; Pfizer: Consultancy; Amgen: Consultancy, Honoraria, Other: Travel Support. Fielding:Amgen: Consultancy, Honoraria. Sterling:Amgen: Employment, Equity Ownership. Benjamin:Amgen: Employment, Equity Ownership. Stein:Amgen: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Seattle Genetics: Research Funding.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 896-896
Author(s):  
Carlo Gambacorti-Passerini ◽  
Michael W. Deininger ◽  
Michael J. Mauro ◽  
Charles Chuah ◽  
Dong-Wook Kim ◽  
...  

Abstract Introduction: Bosutinib is a potent SRC/ABL tyrosine kinase inhibitor approved for treatment of adults with CML resistant or intolerant to prior therapy. Here we compare the efficacy and safety of first-line bosutinib versus imatinib in patients with chronic phase (CP) CML enrolled in BFORE after ≥18 months of follow-up. Methods: BFORE (NCT02130557) is an ongoing, multinational, open label phase 3 study that randomized 536 patients 1:1 to 400 mg QD bosutinib (n=268) or 400 mg QD imatinib (n=268 [3 not treated]). The prespecified primary endpoint was major molecular response (MMR) rate at 12 months in the modified intent-to-treat (mITT) population, defined as Philadelphia chromosome‒positive (Ph+) patients with e13a2/e14a2 transcripts, and excluding Ph- patients and those with unknown Ph status and/or BCR-ABL transcript type (mITT: BOS, n=246; IM, n=241). Efficacy results refer to the mITT population unless otherwise noted. Results: MMR rate was higher with bosutinib versus imatinib at 18 months (56.9% vs 47.7%; P=0.042). Among all randomized patients (ITT) 18-month MMR rates were higher for bosutinib (56.7% vs 46.6%; P &lt;0.02). Earlier analyses (Table) showed complete cytogenetic response (CCyR) rate by 12 months (77.2% vs 66.4%; P=0.0075) was significantly higher with bosutinib versus imatinib. Rates of BCR-ABL1 transcript ratio ≤10% (International Scale) at 3 months (75.2% vs 57.3%), as well as MR4 at 12 months (20.7% vs 12.0%) and MR4.5 at 12 months (8.1% vs 3.3%), were all higher with bosutinib versus imatinib (all P &lt;0.025). By comparison at 18 months, rates of MR4 (24.4% vs 18.3%) and MR4.5 (11.4% vs 7.1%) were consistent with this trend. Also after ≥18 months follow-up, time to MMR (hazard ratio=1.36, based on cumulative incidence; P=0.0079) and time to CCyR (hazard ratio=1.33; P=0.0049) were shorter for bosutinib (Figure). Cumulative incidence of transformation to accelerated/blast phase disease at 18 months was 2.0% and 2.9% for bosutinb and imatinib, respectively, of which 2 bosutinib and 4 imatinib patients discontinued treatment due to transformation. Additional treatment discontinuations due to suboptimal response/treatment failure occurred in 11 (4.1%) and 35 (13.2%) of bosutinib and imatinib patients, respectively. Dose increases happened in 20% of bosutinib-treated and 31% of imatinib-treated pts There were 2 deaths and 9 deaths in the bosutinib and imatinib arms, respectively. One patient taking bosutinib died within 28 days of last dose, while 4 patients taking imatinib died with that period from last dose. Overall survival at 18 months was 99.6% vs. 96.6% for bosutinib and imatinib groups, respectively. Grade ≥3 diarrhea (8.2% vs 0.8%) and increased alanine (20.9% vs 1.5%) and aspartate (10.1% vs 1.9%) aminotransferase levels were more frequent with bosutinib. Cardiovascular, peripheral vascular, and cerebrovascular events were infrequent in both arms (3.4%, 1.9%, and 0.4% bosutinib vs 0.0%, 1.1%, and 0.8% imatinib; grade ≥3: 1.5%, 0%, and 0.4% vs 0%, 0%, and 0.4%). There were no deaths in the bosutinib arm and 1 death in the imatinib arm due to treatment-emergent vascular events. Treatment discontinuations due to drug-related toxicity occurred in 15.3% and 9.4% of bosutinib and imatinib patients, respectively. Conclusion: After 18 months of follow-up,the MMR benefit seen with bosutinib over imatinib was sustained. These results are in line with observations at 12 months where patients taking bosutinib had significantly higher response rates (primary endpoint) and achieved responses sooner than those on imatinib. Safety data were consistent with the known safety profiles. These results suggest that bosutinib may be an important treatment option for patients with newly diagnosed CP CML. Disclosures Gambacorti-Passerini: Pfizer: Consultancy, Honoraria, Research Funding; BMS: Consultancy. Deininger: Novartis: Consultancy, Research Funding; Pfizer: Consultancy; Celgene: Research Funding; BMS: Consultancy, Research Funding; Gilead: Research Funding; ARIAD: Consultancy; Ariad Pharmaceuticals, Bristol Myers Squibb, CTI BioPharma Corp, Gilead, Incyte, Novartis, Pfizer, Celgene, Blue Print, Galena: Consultancy, Membership on an entity's Board of Directors or advisory committees; Incyte: Consultancy. Mauro: Bristol-Myers Squibb: Consultancy. Chuah: Avillion: Honoraria; Chiltern: Honoraria; BMS: Honoraria, Other: Travel; Novartis: Honoraria. Kim: Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees, Research Funding; Il-Yang: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Milojkovic: Novartis: Consultancy, Honoraria; Incyte: Honoraria, Speakers Bureau; Pfizer: Consultancy, Honoraria; BMS: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria. le Coutre: BMS: Honoraria; Pfizer: Honoraria; Incyte: Honoraria; Novartis: Honoraria, Research Funding; ARIAD: Honoraria. García Gutiérrez: Pfizer: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria, Research Funding; Incyte: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Crescenzo: Pfizer: Employment, Equity Ownership. Leip: Pfizer: Employment, Equity Ownership. Bardy-Bouxin: Pfizer: Employment, Equity Ownership. Hochhaus: Novartis: Research Funding; Pfizer: Research Funding; Incyte: Research Funding; Ariad: Research Funding; MSD: Research Funding; BMS: Research Funding. Brümmendorf: Pfizer: Consultancy, Research Funding; Novartis: Consultancy, Research Funding. Cortes: Sun Pharma: Research Funding; ARIAD: Consultancy, Research Funding; Novartis Pharmaceuticals Corporation: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; BMS: Consultancy, Research Funding; ImmunoGen: Consultancy, Research Funding; Teva: Research Funding.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. LBA-1-LBA-1 ◽  
Author(s):  
Giuseppe Saglio ◽  
Dong-Wook Kim ◽  
Surapol Issaragrisil ◽  
Philipp D. le Coutre ◽  
Josy Reiffers ◽  
...  

Abstract Abstract LBA-1 Background: Nilotinib is a highly potent and the most selective inhibitor of BCR-ABL, the only proven molecular target for CML therapy. ENESTnd (Evaluating Nilotinib Efficacy and Safety in Clinical Trials-Newly Diagnosed Patients) is a phase 3, randomized, open-label, multicenter study comparing the efficacy and safety of 300 or 400 mg bid nilotinib with 400 mg qd imatinib in patients (pts) with newly diagnosed Ph+ CML in chronic phase (CML-CP). Methods: 846 pts with newly diagnosed Ph+ CML-CP, diagnosed within 6 mos, and stratified by Sokal risk score, were randomized 1:1:1 to nilotinib 300 mg bid (n=282), nilotinib 400 mg bid (n=281), and imatinib 400 mg qd (n=283) arms. The primary endpoint was rate of major molecular response (MMR) at 12 months (mos). All pts had a minimum of 12 mos of treatment or discontinued early; median follow-up was 14 mos. MMR was defined as a value of ≤ 0.1% of BCR-ABL/ABL ratio on the International Scale. Molecular response was assessed by RQ-PCR at baseline, monthly for 3 mos and every 3 mos thereafter. Samples were analyzed at a central PCR laboratory. The major secondary endpoint was rate of complete cytogenetic response (CCyR) by 12 mos based on bone marrow cytogenetics. Results: Baseline demographics, disease characteristics, and Sokal scores were well balanced among the 3 arms; pts with high-risk Sokal scores were 28% in all arms. Median dose intensities of nilotinib delivered were 592 mg/day for 300 mg bid and 779 mg/day for 400 mg bid; imatinib dose intensity was 400 mg/day. Overall, 84%, 82%, and 79% of pts remained on the study for 300 mg bid nilotinib, 400 mg bid nilotinib, and 400 mg qd imatinib, respectively. Rates of MMR at 12 mos (Table) were superior for nilotinib 300 mg bid compared with imatinib 400 mg qd (44% vs. 22%,P < .0001) and also for nilotinib 400 mg bid compared with imatinib 400 mg qd (43% vs. 22%,P < .0001). Median time to MMR among pts who achieved MMR was faster for nilotinib 300 mg bid (5.7 mos) and nilotinib 400 mg bid (5.8 mos) compared with imatinib 400 mg qd (8.3 mos). Rates of CCyR by 12 mos were significantly higher for both nilotinib at either 300 mg bid compared with imatinib 400 mg qd (80% vs. 65%,P < .0001) and for nilotinib 400 mg bid compared with imatinib 400 mg qd (78% vs. 65%,P = .0005). Overall, progression to advanced disease was lower for nilotinib 300 mg bid (2 pts) and nilotinib 400 mg bid (1 pt) compared with imatinib 400 mg qd (11 pts). Overall, both drugs were well-tolerated. Rates of discontinuation due to adverse events or laboratory abnormalities were 7% for nilotinib 300 mg bid, 11% for nilotinib 400 mg bid, and 9% for imatinib 400 mg qd. Pts were monitored for QT prolongation and LVEF. No patients in any treatment arm showed a QTcF interval > 500 msec. There was no decrease from baseline in mean LVEF anytime during treatment in any arm. The study is ongoing. Conclusions: Nilotinib at both 300 mg bid and 400 mg bid induced significantly higher and faster rates of MMR and CCyR compared with imatinib 400 mg qd, the current standard of care in pts with newly diagnosed CML. Nilotinib was effective across all Sokal scores. After only one year of treatment, both nilotinib arms resulted in a meaningful clinical benefit compared to imatinib, with reduction of transformation to AP/BC. Nilotinib exhibited a favorable safety and tolerability profile. The superior efficacy and favorable tolerability profile of nilotinib compared with imatinib suggests that nilotinib may become the standard of care in newly diagnosed CML. Disclosures: Saglio: Novartis: Consultancy, Speakers Bureau; BMS: Consultancy, Speakers Bureau. Off Label Use: Nilotinib is not currently approved for first-line treatment of CML. The presentation will report the results from a randomized study of imatinib versus nilotinib in patients with newly diagnosed Ph+ CML-CP. Kim:Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; BMS: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Wyeth: Research Funding. le Coutre:Novartis: Honoraria, Research Funding; BMS: Honoraria. Reiffers:Novartis: Research Funding. Pasquini:Novartis: Consultancy, Membership on an entity’s Board of Directors or advisory committees; BMS: Membership on an entity’s Board of Directors or advisory committees; Schering: Membership on an entity’s Board of Directors or advisory committees. Clark:Novartis: Honoraria, Research Funding, Speakers Bureau. Hughes:Novartis: Honoraria, Research Funding; BMS: Honoraria, Research Funding. Hochhaus:Novartis: Research Funding. Gallagher:Novartis: Employment, Equity Ownership. Hoenekopp:Novartis: Employment. Dong:Novartis: Employment, Equity Ownership. Haque:Novartis: Employment. Larson:Novartis:


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3063-3063 ◽  
Author(s):  
Michael J. Mauro ◽  
Jorge E. Cortes ◽  
Hagop M. Kantarjian ◽  
Neil P. Shah ◽  
Dale L. Bixby ◽  
...  

Abstract Background: Ponatinib, an oral tyrosine kinase inhibitor with potent activity against native and mutant BCR-ABL1, is approved for patients with refractory chronic myeloid leukemia (CML) or Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) for whom no other tyrosine kinase inhibitor (TKI) therapy is indicated, or for patients with the T315I mutation. The efficacy and safety of ponatinib in patients with resistant/refractory hematologic malignancies were evaluated in a phase 1 trial (NCT00660920). Here, we report 4-year follow-up data from chronic-phase (CP)-CML patients; final data (approximately 5-year follow-up) will be presented. Methods: In this open-label, dose-escalation, phase 1 trial, 81 patients with resistant/refractory hematologic malignancies (CP-CML, 43 patients; accelerated-phase CML, 9 patients; blast-phase CML, 8 patients; Ph+ ALL, 5 patients) were enrolled. Patients were treated with ponatinib at a starting dose of 2 mg/d - 60 mg/d; intra-patient dose escalation was permitted. In Oct 2013, dose reduction instructions were provided in response to an observed accumulation of arterial occlusive events (AOEs) with longer follow-up across the ponatinib clinical program. For data presented herein, the data cutoff date is 2 Feb 2015, with median follow-up of 53.1 months (range, 1.7 - 69.9 months) for CP-CML patients. Results: Among CP-CML patients, at baseline, median age was 55 years and median time since diagnosis was 6.6 years; BCR-ABL1 kinase domain mutations were reported in 63% of patients, with T315I confirmed at a central laboratory in 28% of patients. Patients were heavily pretreated, with 37% having received 2 prior TKIs and 60% having received ≥3 prior TKIs. Of 43 CP-CML patients, 22 (51%) remained on ponatinib treatment at data cutoff. Adverse events (AEs; 26%) and disease progression (9%) were the most common reasons for discontinuation of treatment. Cumulative response rates were: major cytogenetic response (MCyR), 72%; complete cytogenetic response (CCyR), 65%; major molecular response (MMR; assessed at a central laboratory), 56%; molecular response 4 (MR4), 42%; MR4.5, 28%. Responses were durable (Table), with median durations of response not reached for MCyR, CCyR, and MMR. Among patients who received ponatinib at starting doses of ≤30 mg/d (n = 15), MCyR was achieved by 67%, CCyR by 53%, and MMR by 47%; ponatinib dose was ≤30 mg/d in all but one of these patients at the time of response. Of 19 patients who were ongoing and in MCyR as of Oct 2013, 13 had their dose reduced; all 13 dose-reduced patients maintained MCyR at data cutoff. Of the 22 ongoing patients at the time of the present analysis, 18 (82%) had CCyR and 17 (77%) had MMR or better (MMR, 6 patients; MR4, 1 patient; MR4.5, 9 patients; MR5, 1 patient) as their response at the data cutoff; 14/22 (64%) ongoing patients were receiving 15 mg/d as their current dose as of the data cutoff. Rash (65%), fatigue (63%), abdominal pain (58%), headache (58%) and arthralgia (53%) were the most common treatment-emergent AEs. The incidence of AOEs (any/serious) was 40%/30% (by subcategory: cardiovascular, 30%/21%; cerebrovascular, 9%/7%; peripheral vascular, 14%/9%). Conclusions: With median follow-up of over 4 years in this phase 1 study, ponatinib continues to provide clinical benefit to heavily pre-treated CP-CML patients, approximately half of whom continue to receive ponatinib, with a majority in deep response that has been long-lasting; final study data will be presented. The most common treatment-emergent AEs were consistent with the AE profile across the clinical program. Potential for long-term benefit, demonstrated herein, versus risk should be considered when using ponatinib in this patient population. Study sponsor: ARIAD Pharmaceuticals, Inc. Disclosures Mauro: BMS: Consultancy, Honoraria; ARIAD: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Pfizer: Consultancy, Honoraria. Cortes:ARIAD: Consultancy, Research Funding; Bristol-Myers Squib: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Pfizer: Consultancy, Research Funding; Teva: Research Funding. Kantarjian:Bristol-Myers Squibb: Research Funding; Amgen: Research Funding; ARIAD: Research Funding; Pfizer Inc: Research Funding; Delta-Fly Pharma: Research Funding; Novartis: Research Funding. Shah:ARIAD: Research Funding; BMS: Research Funding; Daiichi-Sankyo: Research Funding; Pfizer: Research Funding; Plexxikon: Research Funding. Flinn:Janssen: Research Funding; Pharmacyclics LLC, an AbbVie Company: Research Funding; Gilead Sciences: Research Funding; ARIAD: Research Funding; RainTree Oncology Services: Equity Ownership. Rivera:ARIAD: Employment, Equity Ownership. Lustgarten:ARIAD: Employment, Equity Ownership. Santillana:ARIAD: Employment, Equity Ownership. Heinrich:Novartis: Consultancy, Patents & Royalties, Research Funding; Pfizer: Consultancy; Bayer: Research Funding; BMS: Research Funding; Blueprint Medicines: Consultancy; MolecularMD: Consultancy, Equity Ownership; ARIAD: Consultancy, Research Funding; Onyx: Consultancy. Druker:Agios: Honoraria; Ambit BioSciences: Consultancy; ARIAD: Patents & Royalties, Research Funding; Array: Patents & Royalties; AstraZeneca: Consultancy; Blueprint Medicines: Consultancy, Equity Ownership, Other: travel, accommodations, expenses ; BMS: Research Funding; CTI: Equity Ownership; Curis: Patents & Royalties; Cylene: Consultancy, Equity Ownership; D3 Oncology Solutions: Consultancy; Gilead Sciences: Consultancy, Other: travel, accommodations, expenses ; Lorus: Consultancy, Equity Ownership; MolecularMD: Consultancy, Equity Ownership, Patents & Royalties; Novartis: Research Funding; Oncotide Pharmaceuticals: Research Funding; Pfizer: Patents & Royalties; Roche: Consultancy. Deininger:Pfizer: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Research Funding; Incyte: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Research Funding; CTI BioPharma Corp.: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding; Bristol Myers Squibb: Consultancy, Research Funding; Ariad: Consultancy, Membership on an entity's Board of Directors or advisory committees. Talpaz:Novartis: Research Funding; Incyte Corporation: Other: Travel expense reimbursement, Research Funding; Ariad: Other: Expense reimbursement, travel accomodation expenses, Research Funding; Pfizer: Consultancy, Other: travel accomodation expenses, Research Funding.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2755-2755
Author(s):  
Timothy P. Hughes ◽  
Dong-Wook Kim ◽  
Gabriel Etienne ◽  
Carmino De Souza ◽  
Mineo Kurokawa ◽  
...  

Abstract Abstract 2755 Background: In ENESTnd, nilotinib demonstrated superior efficacy vs imatinib in newly diagnosed patients (pts) with CML-CP, including a significantly reduced rate of progression to AP/BC on treatment. Here, we examined the occurrence of emergent mutations on treatment and their impact on response. Data on the incidence of mutations and impact on efficacy with a minimum follow-up of 36-months (mo) for all pts will be presented. Methods: Pts with CML-CP were randomized to receive nilotinib 300 mg BID (n = 282), nilotinib 400 mg BID (n = 281), or imatinib 400 mg QD (n = 283). Mutation testing was performed by direct sequencing of the kinase domain (amino acids 230 to 490; sensitivity, 10%-20%) in a central lab at: baseline, 5-fold increase in BCR-ABL levels, lack of MMR at 12 mo, loss of MMR, or treatment discontinuation. Results: With a minimum follow-up of 24 mo, twice as many pts had emergent mutations on imatinib (n = 20) vs nilotinib (n = 10, nilotinib 300 mg BID; n = 8, nilotinib 400 mg BID), with the majority of mutations emerging in pts with high and intermediate Sokal scores (Table). Of pts with mutations emerging on imatinib, the majority (65%) had nilotinib-sensitive, imatinib-resistant mutations; whereas nilotinib was effective in preventing the emergence of clones with nilotinib-sensitive mutations. The incidence of T315I mutations was similar for the nilotinib (n = 3, nilotinib 300 mg BID; n = 2, nilotinib 400 mg BID) and imatinib (n = 3) arms and most of these T315I mutations (6/8) were detected within the first 12 mo of therapy. All but 1 pt with the T315I mutation had a high Sokal risk; the other pt had an intermediate Sokal risk. Overall, across the 3 treatment arms, the incidence of any mutation was 14% in pts who had BCR-ABLIS > 10% at 6 mo vs 4% in pts with BCR-ABLIS ≤ 10% at 6 mo. The majority of pts with emerging mutations had suboptimal response (SoR) or treatment failure (TF) on treatment; all pts with the T315I mutation had SoR or TF. Of the pts with mutations, 1/10 pts on nilotinib 300 mg BID, 2/8 pts on nilotinib 400 mg BID, and 7/20 pts on imatinib, progressed to AP/BC on treatment. BCR-ABL mutations did not account for all cases of progression to AP/BC, loss of CCyR, and loss of MMR on treatment (Table). Of the pts who achieved an MMR on treatment, 0/203 (0%), 2/192 (1%) and 3/131 (2%) had a mutation and lost MMR with nilotinib 300 mg BID, nilotinib 400 mg BID or imatinib, respectively. Conclusions: Nilotinib may be more effective in preventing the development of emerging mutations vs imatinib. More pts with new mutations progressed to AP/BC on imatinib than on nilotinib. These data suggest that deeper molecular responses with nilotinib protect from the development of emerging mutations and progression to AP/BC vs imatinib. Disclosures: Hughes: Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Ariad: Honoraria, Membership on an entity's Board of Directors or advisory committees. Kim:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding. Kurokawa:Novartis Pharmaceutical: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. Kalaycio:Novartis Pharmaceutical: Honoraria, Research Funding, Speakers Bureau. Saglio:Bristol Myers Squipp: Consultancy, Speakers Bureau; Novartis Pharmaceutical: Consultancy, Speakers Bureau; Pfizer: Consultancy. Larson:Novartis Pharmaceuticals: Consultancy, Honoraria, Research Funding. Kantarjian:Pfizer: Research Funding; Novartis: Research Funding; Novartis: Consultancy; BMS: Research Funding. Hoenekopp:Novartis Pharmaceutical: Employment, Equity Ownership. Shou:Novartis: Employment. Yu:Novartis: Employment, Equity Ownership. Blakesley:Novartis Pharmaceutical: Employment. Rosti:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria; Roche: Honoraria. Hochhaus:Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Novartis Pharmaceutical: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria, Research Funding; Merck: Consultancy, Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3129-3129
Author(s):  
Hans C. Lee ◽  
Sikander Ailawadhi ◽  
Cristina Gasparetto ◽  
Sundar Jagannath ◽  
Robert M. Rifkin ◽  
...  

Background: Multiple myeloma (MM) is common among the elderly, with 35% of patients (pts) diagnosed being aged ≥75 years (y). With increasing overall life expectancy, the incidence and prevalence of newly diagnosed and previously treated MM patients ≥80 y is expected to increase over time. Because elderly pts are often excluded from clinical trials, data focused on their treatment patterns and clinical outcomes are lacking. The Connect® MM Registry (NCT01081028) is a large, US, multicenter, prospective observational cohort study of pts with newly diagnosed MM (NDMM) designed to examine real-world diagnostic patterns, treatment patterns, clinical outcomes, and health-related quality of life patient-reported outcomes. This analysis reviews treatment patterns and outcomes in elderly pts from the Connect MM Registry. Methods: Pts enrolled in the Connect MM registry at 250 community, academic, and government sites were included in this analysis. Eligible pts were adults aged ≥18 y with symptomatic MM diagnosed ≤2 months before enrollment, as defined by International Myeloma Working Group criteria; no exclusion criteria were applied. For this analysis, pts were categorized into 4 age groups: <65, 65 to 74, 75 to 84, and ≥85 y. Pts were followed from time of enrollment to the earliest of disease progression (or death), loss to follow-up, or data cutoff date of February 7, 2019. Descriptive statistics were used for baseline characteristics and treatment regimens. Survival outcomes were analyzed using Cox regression. Time to progression (TTP) analysis excluded causes of death not related to MM. Results: Of 3011 pts enrolled (median age 67 y), 132 (4%) were aged ≥85 y, and 615 (20%) were aged 75-84 y at baseline. More pts aged ≥85 y had poor prognostic factors such as ISS stage III disease and reduced hemoglobin (<10 g/dL or >2 g/dL <LLN) compared with other age groups, although no notable differences between creatinine and calcium levels were observed across age groups (Table). A lower proportion of elderly pts (75-84 and ≥85 y) received triplet regimens as frontline therapy. More elderly pts received a single novel agent, whereas use of 2 novel agents was more common in younger pts (Table). The most common frontline regimens among elderly pts were bortezomib (V) + dexamethasone (D), followed by lenalidomide (R) + D, whereas those among younger pts included RVD, followed by VD and CyBorD (Table). No pt aged ≥85 y, and 4% of pts aged 75-84 y received high-dose chemotherapy and autologous stem cell transplant (vs 61% in the <65 y and 37% in the 65-74 y age group). The most common maintenance therapy was RD in pts ≥85 y (although the use was low) and R alone in other age groups (Table). In the ≥85 y group, 27%, 10%, and 4% of pts entered 2L, 3L, and 4L treatments respectively, vs 43%, 23%, and 13% in the <65 y group. Progression-free survival was significantly shorter in the ≥85 y age group vs the 75-84 y age group (P=0.003), 65-74 y age group (P<0.001), and <65 y age group (P<0.001; Fig.1). TTP was significantly shorter in the ≥85 y group vs the <65 y group (P=0.020); however, TTP was similar among the 65-74 y, 75-84 y, and ≥85 y cohorts (Fig. 2). Overall survival was significantly shorter in the ≥85 y group vs the 75-84 y, 65-74 y, and <65 y groups (all P<0.001; Fig. 3). The mortality rate was lowest (46%) during first-line treatment (1L) in pts aged ≥85 y (mainly attributed to MM progression) and increased in 2L and 3L (47% and 54%, respectively); a similar trend was observed in the younger age groups. The main cause of death was MM progression (29% in the ≥85 y vs 16% in the <65 y group). Other notable causes of death in the ≥85 y group included cardiac failure (5% vs 2% in <65 y group) and pneumonia (5% vs 1% in <65 y group). Conclusions: In this analysis, elderly pts received similar types of frontline and maintenance regimens as younger pts, although proportions varied with decreased use of triplet regimens with age. Considering similarities in TTP across the 65-74 y, 75-84 y, and ≥85 y cohorts, these real-world data support active treatment and aggressive supportive care of elderly symptomatic pts, including with novel agents. Additionally, further clinical studies specific to elderly patients with MM should be explored. Disclosures Lee: Amgen: Consultancy, Research Funding; GlaxoSmithKline plc: Research Funding; Sanofi: Consultancy; Daiichi Sankyo: Research Funding; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding. Ailawadhi:Janssen: Consultancy, Research Funding; Takeda: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Celgene: Consultancy; Cellectar: Research Funding. Gasparetto:Celgene: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; Janssen: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed ; BMS: Consultancy, Honoraria, Other: Travel, accommodations, or other expenses paid or reimbursed . Jagannath:AbbVie: Consultancy; Merck & Co.: Consultancy; Bristol-Myers Squibb: Consultancy; Karyopharm Therapeutics: Consultancy; Celgene Corporation: Consultancy; Janssen Pharmaceuticals: Consultancy. Rifkin:Celgene: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Membership on an entity's Board of Directors or advisory committees. Durie:Amgen, Celgene, Johnson & Johnson, and Takeda: Consultancy. Narang:Celgene: Speakers Bureau. Terebelo:Celgene: Honoraria; Jannsen: Speakers Bureau; Newland Medical Asociates: Employment. Toomey:Celgene: Consultancy. Hardin:Celgene: Membership on an entity's Board of Directors or advisory committees. Wagner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; American Cancer Society: Other: Section editor, Cancer journal. Omel:Celgene, Takeda, Janssen: Other: Patient Advisory Committees. Srinivasan:Celgene: Employment, Equity Ownership. Liu:TechData: Consultancy. Dhalla:Celgene: Employment. Agarwal:Celgene Corporation: Employment, Equity Ownership. Abonour:BMS: Consultancy; Celgene: Consultancy, Research Funding; Takeda: Consultancy, Research Funding; Janssen: Consultancy, Research Funding.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 207-207 ◽  
Author(s):  
Timothy P. Hughes ◽  
Andreas Hochhaus ◽  
Giuseppe Saglio ◽  
Dong-Wook Kim ◽  
Saengsuree Jootar ◽  
...  

Abstract Abstract 207 Background: Results from the phase 3, international, randomized ENESTnd trial have demonstrated the superior efficacy of nilotinib over imatinib with significantly higher rates of major molecular response (MMR), complete cytogenetic response (CCyR), and with significantly lower rates of progression to AP/BC on treatment. Here, we present data with a median follow-up of 18 months. Methods: 846 CML-CP patients were randomized to nilotinib 300 mg twice daily (bid) (n=282), nilotinib 400 mg bid (n=281), and imatinib 400 mg once daily (n=283). Primary endpoint was MMR (≤ 0.1% BCR-ABLIS) rate “at” 12 months, as previously presented. Key secondary endpoint was durable MMR at 24 months. Other endpoints assessed at 24 months include progression to AP/BC (with and without clonal evolution), event-free survival, progression-free survival, and overall survival (OS). Results: With a median follow-up of 18 months, the overall best MMR rate was superior for nilotinib 300 mg bid (66%, P < .0001) and nilotinib 400 mg bid (62%, P < .0001) compared with imatinib (40%). Superior rates of MMR were observed in both nilotinib arms compared with the imatinib arm across all Sokal risk groups (Table). The overall best rate of BCR-ABLIS ≤ 0.0032% (equivalent to complete molecular response, CMR) was superior for nilotinib 300 mg bid (21%, P < .0001) and nilotinib 400 mg bid (17%, P < .0001) compared with imatinib (6%). The overall best CCyR rate was superior for nilotinib 300 mg bid (85%, P < .001) and nilotinib 400 mg bid (82%, P=.017) compared with imatinib (74%). The superior efficacy of nilotinib was further demonstrated using the 2009 European LeukemiaNet (ELN) 12-month milestone in which fewer patients had suboptimal response or treatment failure on nilotinib 300 mg bid (2%, 3%) and nilotinib 400 mg bid (2%, 2%) vs imatinib (11%, 8%). Rates of progression to AP/BC on treatment were significantly lower for nilotinib 300 mg bid (0.7%, P=.006) and nilotinib 400 mg bid (0.4%, P=.003) compared with imatinib (4.2%). The rate of progression on treatment was also significantly lower for nilotinib when including clonal evolution as a criteria for progression (Table). There were fewer CML-related deaths on nilotinib 300 mg bid (n=2), and 400 mg bid (n=1) vs imatinib (n=8). Estimated OS rate (including data from follow-up after discontinuation) at 18 months was higher for nilotinib 300 mg bid (98.5%, P=.28) and nilotinib 400 mg bid (99.3%, P=.03) vs imatinib (96.9%). Both drugs were well-tolerated. Discontinuations due to adverse events or laboratory abnormalities were lowest for nilotinib 300 mg bid (7%) compared with nilotinib 400 mg bid (12%) and imatinib (9%). With longer follow up there has been minimal change in the occurrence of AEs. Minimum 24-month follow-up data for all patients will be presented. Conclusions: With longer follow-up, nilotinib was associated with a significantly lower rate of progression to AP/BC on treatment and lower rates of suboptimal response or treatment failure vs imatinib. Nilotinib resulted in fewer CML-related deaths and a higher OS rate vs imatinib. Nilotinib induced superior rates of MMR, CMR, and CCyR vs imatinib in patients with newly diagnosed CML-CP. Taken together, these data support nilotinib as a new standard of care for patients with newly diagnosed CML. Disclosures: Hughes: Novartis: Honoraria, Research Funding, Speakers Bureau; Bristol-Meyers Squibb: Honoraria, Research Funding; Ariad: Honoraria. Hochhaus:Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding. Saglio:Novartis: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria. Kim:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding. le Coutre:Novartis: Research Funding, Speakers Bureau; Bristol-Myers Squibb: Speakers Bureau. Reiffers:Novartis: Research Funding. Pasquini:Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria. Clark:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genzyme: Honoraria, Research Funding. Gallagher:Novartis Pharma AG: Employment, Equity Ownership. Hoenekopp:Novartis Pharma AG: Employment. Haque:Novartis: Employment. Larson:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding. Kantarjian:Novartis: Consultancy, Research Funding; Bristol Myers Squibb: Research Funding; Pfizer: Research Funding.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 801-801 ◽  
Author(s):  
Francisco Cervantes ◽  
Jean-Jacques Kiladjian ◽  
Dietger Niederwieser ◽  
Andres Sirulnik ◽  
Viktoriya Stalbovskaya ◽  
...  

Abstract Abstract 801 Background: Ruxolitinib is a potent JAK1 & 2 inhibitor that has demonstrated superiority over traditional therapies for the treatment of MF. In the two phase 3 COMFORT studies, ruxolitinib demonstrated rapid and durable reductions in splenomegaly and improved MF-related symptoms and quality of life. COMFORT-II is a randomized, open-label study evaluating ruxolitinib versus BAT in patients (pts) with MF. The primary and key secondary endpoints were both met: the proportion of pts achieving a response (defined as a ≥ 35% reduction in spleen volume) at wk 48 (ruxolitinib, 28.5%; BAT, 0%; P < .0001) and 24 (31.9% and 0%; P < .0001), respectively. The present analyses update the efficacy and safety findings of COMFORT-II (median follow-up, 112 wk). Methods: In COMFORT-II, 219 pts with intermediate-2 or high-risk MF and splenomegaly were randomized (2:1) to receive ruxolitinib (15 or 20 mg bid, based on baseline platelet count [100-200 × 109/L or > 200 × 109/L, respectively]) or BAT. Efficacy results are based on an intention-to-treat analysis; a loss of spleen response was defined as a > 25% increase in spleen volume over on-study nadir that is no longer a ≥ 35% reduction from baseline. Overall survival was estimated using the Kaplan-Meier method. Results: The median follow-up was 112 wk (ruxolitinib, 113; BAT, 108), and the median duration of exposure 83.3 wk (ruxolitinib, 111.4 [randomized and extension phases]; BAT, 45.1 [randomized treatment only]). Because the core study has completed, all pts have either entered the extension phase or discontinued from the study. The primary reasons for discontinuation were adverse events (AEs; ruxolitinib, 11.6%; BAT, 6.8%), consent withdrawal (4.1% and 12.3%), and disease progression (2.7% and 5.5%). Overall, 72.6% of pts (106/146) in the ruxolitinib arm and 61.6% (45/73) in the BAT arm entered the extension phase to receive ruxolitinib, and 55.5% (81/146) of those originally randomized to ruxolitinib remained on treatment at the time of this analysis. The primary reasons for discontinuation from the extension phase were progressive disease (8.2%), AEs (2.1%), and other (4.1%). Overall, 70 pts (48.3%) treated with ruxolitinib achieved a ≥ 35% reduction from baseline in spleen volume at any time during the study, and 97.1% of pts (132/136) with postbaseline assessments experienced a clinical benefit with some degree of reduction in spleen volume. Spleen reductions of ≥ 35% were sustained with continued ruxolitinib therapy (median duration not yet reached); the probabilities of maintaining the spleen response at wk 48 and 84 are 75% (95% CI, 61%-84%) and 58% (95% CI, 35%-76%), respectively (Figure). Since the last report (median 61.1 wk), an additional 9 and 12 deaths were reported in the ruxolitinib and BAT arms, respectively, resulting in a total of 20 (14%) and 16 (22%) deaths overall. Although there was no inferential statistical testing at this unplanned analysis, pts randomized to ruxolitinib showed longer survival than those randomized to BAT (HR = 0.52; 95% CI, 0.27–1.00). As expected, given the mechanism of action of ruxolitinib as a JAK1 & 2 inhibitor, the most common new or worsened grade 3/4 hematologic abnormalities during randomized treatment were anemia (ruxolitinib, 40.4%; BAT, 23.3%), lymphopenia (22.6%; 31.5%), and thrombocytopenia (9.6%; 9.6%). In the ruxolitinib arm, mean hemoglobin levels decreased over the first 12 wk of treatment and then recovered to levels similar to BAT from wk 24 onward; there was no difference in the mean monthly red blood cell transfusion rate among the ruxolitinib and BAT groups (0.834 vs 0.956 units, respectively). Nonhematologic AEs were primarily grade 1/2. Including the extension phase, there were no new nonhematologic AEs in the ruxolitinib group that were not observed previously (in ≥ 10% of pts), and only 1 pt had a new grade 3/4 AE (epistaxis). Conclusion: In COMFORT-II, ruxolitinib provided rapid and durable reductions in splenomegaly; this analysis demonstrates that these reductions are sustained over 2 years of treatment in the majority of pts. Ruxolitinib-treated pts showed longer survival than those receiving BAT, consistent with the survival advantage observed in previous (Verstovsek et al. NEJM. 2012) and current analyses of COMFORT-I, as well as with the comparison of pts of the phase 1/2 study with matched historical controls (Verstovsek et al. Blood. 2012). Disclosures: Cervantes: Sanofi-Aventis: Advisory Board, Advisory Board Other; Celgene: Advisory Board, Advisory Board Other; Pfizer: Advisory Board, Advisory Board Other; Teva Pharmaceuticals: Advisory Board, Advisory Board Other; Bristol-Myers Squibb: Speakers Bureau; Novartis: AdvisoryBoard Other, Speakers Bureau. Kiladjian:Shire: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte: Membership on an entity's Board of Directors or advisory committees; Celgene: Research Funding. Niederwieser:Novartis: Speakers Bureau. Sirulnik:Novartis: Employment, Equity Ownership. Stalbovskaya:Novartis: Employment, Equity Ownership. McQuity:Novartis: Employment, Equity Ownership. Hunter:Incyte: Employment. Levy:Incyte: Employment, stock options Other. Passamonti:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees; Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees. Barbui:Novartis: Honoraria. Gisslinger:AOP Orphan Pharma AG: Consultancy, Speakers Bureau; Celgene: Consultancy, Research Funding, Speakers Bureau; Novartis: Consultancy, Research Funding, Speakers Bureau. Vannucchi:Novartis: Membership on an entity's Board of Directors or advisory committees. Knoops:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees. Harrison:Shire: Honoraria, Research Funding; Sanofi: Honoraria; YM Bioscience: Consultancy, Honoraria; Novartis: Honoraria, Research Funding, Speakers Bureau.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4009-4009
Author(s):  
Jeff H. Lipton ◽  
Luis Meillon ◽  
Vernon Louw ◽  
Carolina Pavlovsky ◽  
Lee-Yung Shih ◽  
...  

Abstract Background Frontline nilotinib 300 mg twice daily (BID) provides superior efficacy vs imatinib in pts with CML-CP, with good tolerability. Evaluating Nilotinib Efficacy and Safety in Clinical Trials—Extending Molecular Reponses (ENESTxtnd) is evaluating the kinetics of molecular response to frontline nilotinib 300 mg BID in pts with newly diagnosed CML-CP, as assessed in national and local laboratories, and is also the first study to evaluate the safety and efficacy of nilotinib dose optimization (including dose re-escalation in pts who require dose reductions due to adverse events [AEs] and dose increase in pts with less than optimal response). Here, we present results of a preplanned, interim analysis (IA) based on the first 20% of pts who completed 12 mo of treatment or discontinued early. Methods ENESTxtnd (NCT01254188) is an open-label, multicenter, phase 3b clinical trial of nilotinib 300 mg BID in adults with CML-CP newly diagnosed within 6 mo of study entry. The primary endpoint is rate of MMR by 12 mo. Molecular responses were monitored by real-time quantitative polymerase chain reaction (RQ-PCR) at local laboratories at baseline, at 1, 2, and 3 mo, and every 3 mo thereafter. Bone marrow cytogenetic analyses were performed locally at baseline, 6 mo, and end of study. Dose reductions were allowed for grade ≥ 2 nonhematologic AEs and grade 3/4 hematologic AEs. Pts with dose reductions could attempt to re-escalate (successful re-escalation defined as ≥ 4 wk on nilotinib 300 mg BID with no dose adjustments for any AE) and remain on study. Dose increase to nilotinib 400 mg BID was allowed in cases of BCR-ABL > 10% on the International Scale (BCR-ABLIS) at 3 mo or later, no major molecular response (MMR; BCR-ABLIS ≤ 0.1%) at 12 mo, loss of MMR, or treatment failure. Results This IA includes 85 pts treated in 12 countries (Argentina, Australia, Brazil, Canada, Israel, Lebanon, Mexico, Malaysia, Saudi Arabia, Thailand, Taiwan, and South Africa). Median age was 49 y (range, 19-85 y), and 58% of pts were male. Median time since diagnosis was 35 days (range, 2-157 days). Prior to study entry, 64 pts (75%) received hydroxyurea, and 3 pts (4%) received imatinib (all for ≤ 2 wk). At the data cutoff, 68 pts (80%) had treatment ongoing, and the remaining 17 had discontinued due to AEs/laboratory abnormalities (n = 8; nonhematologic AEs [n = 5], biochemical abnormalities [n = 2], and hematologic abnormalities [n = 1]), loss to follow-up (n = 2), administrative problems (n = 2), intolerance to the protocol-proposed dose (n = 2), suboptimal response (n = 1), withdrawal of consent (n = 1), or protocol deviation (n = 1). Median time on treatment was 13.8 mo (range, 1 day-18 mo). Median actual dose intensity of nilotinib was 597 mg/day (range, 165-756 mg/day), and 85% of pts had an actual dose intensity of > 400 mg/day to ≤ 600 mg/day. Of 30 pts with dose reductions due to AEs, 19 (63%) successfully re-escalated to nilotinib 300 mg BID. Nine pts (11%) dose escalated to nilotinib 400 mg BID due to lack of efficacy. The primary endpoint of MMR by 12 mo was achieved by 57 pts (67%; 99.89% CI, 49%-82%). Complete cytogenetic response by 6 mo was achieved by 48 pts (56%). Median BCR-ABLIS decreased over time, with a median value of 0.05% (range, 0.00%-41.36%) at 12 mo (Figure). Most pts (91%) achieved early molecular response (BCR-ABLIS ≤ 10% at 3 mo). Of the 8 pts (9%) with BCR-ABLIS > 10% at 3 mo (4 of whom were then dose escalated), 3 achieved MMR by 12 mo (1 of whom had been dose escalated). By the data cutoff, no pt had progressed to accelerated phase/blast crisis (AP/BC), and there had been no deaths on study. Nilotinib was well tolerated, with a safety profile similar to that seen in other frontline studies. Drug-related nonhematologic AEs (≥ 10% of pts) were rash (31%), constipation (13%), and headache (13%). Newly occurring or worsening grade 3/4 hematologic or biochemical abnormalities (≥ 10% of pts) were neutropenia (17%), thrombocytopenia (17%), increased lipase (13%), and increased bilirubin (12%). Conclusions These results demonstrate that dose-optimized nilotinib affords high rates of molecular response in pts with newly diagnosed CML-CP. Further, they support the feasibility of nilotinib dose re-escalation in pts who require temporary dose reductions due to AEs, with 63% of dose-reduced pts able to successfully re-escalate to nilotinib 300 mg BID and safely continue therapy. Disclosures: Lipton: Novartis: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Ariad: Equity Ownership, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau. Meillon:Bayer: Honoraria; Novartis: Honoraria; Bristol Myers Squibb: Honoraria; Pfizer: Honoraria. Louw:Novartis: Congress attendance support Other, Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol Myers Squibb: Congress attendance support, Congress attendance support Other, Consultancy, Honoraria, Membership on an entity’s Board of Directors or advisory committees, Research Funding; Pfizer: Research Funding. Pavlovsky:Novartis: Research Funding, Speakers Bureau; Bristol Myers Squibb: Speakers Bureau. Jin:Novartis: Employment. Acharya:Novartis Healthcare Pvt. Ltd.: Employment. Woodman:Novartis: Employment, Equity Ownership. Hughes:Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Consultancy, Honoraria, Research Funding; Ariad: Consultancy, Honoraria; CSL: Research Funding. Turkina:Novartis: Consultancy, Honoraria; Bristol Myers Squibb: Consultancy, Honoraria.


Sign in / Sign up

Export Citation Format

Share Document