MEIS1 Is Required for the Maintenance of Long Term Hematopoietic Stem Cells Wherein It Regulates Quiescence

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 551-551
Author(s):  
Zeenath Unnisa ◽  
Jason P Clark ◽  
Elizabeth Wojtowicz ◽  
Lino Tessarollo ◽  
Neal G. Copeland ◽  
...  

Abstract Abstract 551 Normal hematopoiesis is maintained by long-term hematopoietic stem cells (LT-HSCs) that are defined by their extensive self-renewal and multipotency. Self-renewal of LT-HSCs in turn is regulated by a complex network of intrinsic and extrinsic factors. The transcription factor MEIS1 is highly expressed in hematopoietic stem and progenitor cells and also in several leukemias, suggesting that MEIS1 might be important in regulating self-renewal. However, the role of MEIS1 in normal hematopoiesis has not been defined. To determine the role of MEIS1 in hematopoiesis, we studied conditional knockout mice. We generated transgenic mice bearing loxp sites flanking the homeodomain of MEIS1. The MEIS1-floxed mice were then bred to Rosa26-CreERT2 mice, the latter expressing cre-recombinase ubiquitously, that can be activated by estrogen or its analog Tamoxifen (Tam). Efficient, complete recombination was achieved in vivo by treating MEIS1-f/f-Cre (homozygous for MEIS1-flox) mice with Tam and in vitro by treating bone marrow cells with 4-hydroxy tamoxifen. Loss of MEIS1 expression was detected by QRT-PCR and western blotting. To determine the role of MEIS1 in the maintenance of adult hematopoiesis, MEIS1-f/f-Cre and control mice were treated with Tam and MEIS1 deletion confirmed by PCR. At three weeks post deletion, bone marrow analysis showed a significant reduction in the number of LT-HSCs defined as lin-/c-Kit+/Sca1+/CD48−/CD150+ in the MEIS1-depleted mice compared to controls (0.012% compared to 0.037%, N=6, p<0.05, t-test). However, the progenitor populations were unaffected by MEIS1 deletion. Over a period of 12 weeks of observation, the mice did not show any signs of distress and the peripheral blood counts of the experimental and control mice remained normal, indicating that short term hematopoiesis was not affected. Cell cycle analysis of LT-HSCs showed that MEIS1 deletion resulted in a significant shift of cells from G0 to G1 phase (G0 and G1 proportions respectively, 81.75±3.25% and 9.40±3% for control and 56.10±0.873% and 31.17±1.5% for MEIS1-deleted). To determine the effects of MEIS1 loss on intrinsic hematopoietic stem cell function, we performed competitive repopulation assays. Bone marrow cells harvested from MEIS1-f/f-Cre or MEIS1-f/+-Cre (control) mice were combined with equal numbers of bone marrow cells from BoyJ mice and transplanted via tail vein injection into lethally irradiated BoyJ mice. Four weeks after transplant, recipients were treated with Tam or vehicle for 5 days and deletion of MEIS1 confirmed by PCR on peripheral blood. Peripheral blood of recipient mice was analyzed at 1, 4, 8, 12 and 16 weeks after treatment and relative chimerism assessed by flow cytometry. At 1 and 4 weeks after treatment, the chimerism in the MEIS1 deleted group (Tam treated MEIS1-f/f-CreER) and the control groups (Tam treated MEIS1-f/+-CReER and vehicle treated MEIS1-f/f-CreER) was comparable (41%, 40.5% and 41.5% respectively, average, N=5 to 8). However, by 8 weeks after treatment, the MEIS1 deleted group showed a significant decline in chimerism compared to controls (18.2% compared to 43.1% and 35.1% respectively, p<0.02, t-test) and at 16 weeks the chimerism in the MEIS1-deleted group declined further (11.1% compared to 40.2% and 35.0% respectively, p<0.001). Subpopulation analysis showed loss of chimerism in granulocytes and in B and T lymphocytes. The latency and breadth of the effect of MEIS1 loss suggested an effect on the hematopoietic stem cell population. Indeed, bone marrow analysis of transplant recipients showed near complete loss of LT-HSC chimerism (3% compared to 70.25% and 75.6% respectively, p<0.001). Finally, we performed gene expression profiling on lineage negative bone marrow cells with and without MEIS1 deletion. Results showed that loss of MEIS1 was associated with decreased expression of hypoxia-responsive genes. Collectively, these results indicate that MEIS1 is required for the maintenance of the pool of LT-HSCs. Loss of MEIS1 promotes cycling and exhaustion of LT-HSCs. Further, we propose that activation of the hypoxia-response pathway may be one of the mechanisms by which MEIS1 exerts its effects on hematopoietic stem cells. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 600-600
Author(s):  
Manabu Matsunawa ◽  
Ryo Yamamoto ◽  
Masashi Sanada ◽  
Aiko Sato ◽  
Yusuke Shiozawa ◽  
...  

Abstract Frequent pathway mutation involving multiple components of the RNA splicing machinery is a cardinal feature of myeloid neoplasms showing myeloid dysplasia, in which the major mutational targets include U2AF35, ZRSR2, SRSF2 and SF3B1. Among these, SF3B1 mutations were strongly associated with MDS subtypes characterized by increased ring sideroblasts, such as refractory anemia and refractory cytopenia with multiple lineage dysplasia with ring sideroblasts, suggesting the critical role of SF3B1 mutations in these MDS subtypes. However, currently, the molecular mechanism of SF3B1mutation leading to the ring sideroblasts formation and MDS remains unknown. The SF3B1 is a core component of the U2-small nuclear ribonucleoprotein (U2 snRNP), which recognizes the 3′ splice site at intron–exon junctions. It was demonstrated that Sf3b1 null mice were shown to be embryonic lethal, while Sf3b1 +/- mice exhibited various skeletal alterations that could be attributed to deregulation of Hox gene expression due to haploinsufficiency of Sf3b1. However, no detailed analysis of the functional role of Sf3b1 in hematopoietic system in these mice has been performed. So, to clarify the role of SF3B1 in hematopoiesis, we investigated the hematological phenotype of Sf3b1 +/- mice. There was no significant difference in peripheral blood counts, peripheral blood lineage distribution, bone marrow total cellularity or bone marrow lineage composition between Sf3b1 +/+ and Sf3b1 +/- mice. Morphologic abnormalities of bone marrow and increased ring sideroblasts were not observed. However, quantitative analysis of bone marrow cells from Sf3b1 +/- mice revealed a reduction of the number of hematopoietic stem cells (CD34 neg/low, cKit positive, Sca-1 positive, lineage-marker negative: CD34-KSL cells) measured by flow cytometry analysis, compared to Sf3b1 +/+ mice. Whereas examination of hematopoietic progenitor cells revealed a small decrease in KSL cell populations and megakaryocyte - erythroid progenitors (MEP) in Sf3b1 +/- mice, and common myeloid progenitors (CMP), granulocyte - monocyte progenitors (GMP) and common lymphoid progenitors (CLP) remained unchanged between Sf3b1 +/+ and Sf3b1 +/- mice. In accordance with the reduced number of hematopoietic stem cells in Sf3b1 +/- mice, the total number of colony-forming unit generated from equal number of whole bone marrow cells showed lower colony number in Sf3b1 +/- mice in vitro. Competitive whole bone marrow transplantation assay, which irradiated recipient mice were transplanted with donor whole bone marrow cells from Sf3b1 +/+ or Sf3b1 +/- mice with an equal number of competitor bone marrow cells, revealed impaired competitive whole bone marrow reconstitution capacity of Sf3b1 +/- mice in vivo. These data demonstrated Sf3b1 was required for hematopoietic stem cells maintenance. To further examine the function of hematopoietic stem cells in Sf3b1 +/- mice, we performed competitive transplantation of purified hematopoietic stem cells from Sf3b1 +/+ or Sf3b1 +/- mice into lethally irradiated mice together with competitor bone marrow cells. Sf3b1 +/- progenitors showed reduced hematopoietic stem cells reconstitution capacity compared to those from Sf3b1 +/+ mice. In serial transplantation experiments, progenitors from Sf3b1 +/- mice showed reduced repopulation ability in the primary bone marrow transplantation, which was even more pronounced after the second bone marrow transplantation. Taken together, these data demonstrate that Sf3b1 plays an important role in normal hematopoiesis by maintaining hematopoietic stem cell pool size and regulating hematopoietic stem cell function. To determine the molecular mechanism underlying the observed defect in hematopoietic stem cells of Sf3b1 +/- mice, we performed RNA-seq analysis. We will present the results of our biological assay and discuss the relation of Sf3b1 and hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1706-1712 ◽  
Author(s):  
S Okada ◽  
H Nakauchi ◽  
K Nagayoshi ◽  
S Nishikawa ◽  
S Nishikawa ◽  
...  

The proto-oncogene c-kit encodes a transmembrane tyrosine kinase receptor for stem cell factor (SCF). The c-kit/SCF signal is expected to have an important role in hematopoiesis. A monoclonal antibody (ACK- 2) against the murine c-kit molecule was prepared. Flow cytometric analysis showed that the bone marrow cells that expressed the c-kit molecule (approximately 5%) were B220(B)-, TER119(erythroid)-, Thy1negative-low, and WGA+. A small number of Mac-1(macrophage)+ or Gr- 1(granulocyte)+ cells were c-kit-low positive. Colony-forming unit in culture (CFU-C) and day-8 and day-12 CFU-spleen (CFU-S) existed exclusively in the c-kit-positive fraction. About 20% of the Lin(lineage)-c-kit+ cells were rhodamine-123low and this fraction contained more day-12 CFU-S than day-8 CFU-S. On the basis of these findings, murine hematopoietic stem cells were enriched with normal bone marrow cells. One of two and one of four Thy-1lowLin-WGA+c-kit+ cells were CFU-C and CFU-S, respectively. Long-term repopulating ability was investigated using B6/Ly5 congenic mice. Eight and 25 weeks after transplantation of Lin-c-kit+ cells, donor-derived cells were found in the bone marrow, spleen, thymus, and peripheral blood. In peripheral blood, T cells, B cells, and granulocyte-macrophages were derived from donor cells. Injection of ACK-2 into the irradiated mice after bone marrow transplantation decreased the numbers of day-8 and day-12 CFU-S in a dose-dependent manner. Day-8 spleen colony formation was completely suppressed by the injection of 100 micrograms ACK-2, but a small number of day-12 colonies were spared. Our data show that the c- kit molecule is expressed in primitive stem cells and plays an essential role in the early stages of hematopoiesis.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 307-307
Author(s):  
Sarah C Nabinger ◽  
Michihiro Kobayashi ◽  
Rui Gao ◽  
Sisi Chen ◽  
Chonghua Yao ◽  
...  

Abstract AML is thought to arise from leukemia stem cells (LSCs); however, recent evidence suggests that the transforming events may initially give rise to pre-leukemic hematopoietic stem cells (pre-leukemic HSCs), preceding the formation of fully transformed LSCs. Pre-leukemic HSCs have been shown to contribute to normal blood development and harbor a selective growth advantage compared to normal HSCs. Pre-leukemic HSCs can acquire subsequent mutations, and once differentiation capacity is impaired, leukemia emerges. Recently, acquired somatic TP53 mutations, including p53R248W and p53R273H, were identified in healthy individuals as well as AML patients, suggesting that TP53 mutations may be early events in the pathogenesis of AML. We found that p53R248W HSCs showed a multi-lineage repopulation advantage over WT HSCs in transplantation experiments, demonstrating that mutant p53 confers a pre-leukemic phenotype in murine HSCs. Although TP53 mutations are limited in AML, TP53 mutations do co-exist with mutations of epigenetic regulator, ASXL-1, or receptor tyrosine kinase, FLT3, in AML. Mutations in Asxl-1 are present in ~10-30% of patients with myeloid malignancies and confer poor prognosis. Loss of Asxl-1 in the hematopoietic compartment leads to a myelodysplastic-like syndrome in mice and reduced stem cell self-renewal. Internal tandem duplications in Flt3 (Flt3-ITD) occur in ~30% of AML patients and are associated with adverse clinical outcome. Flt3-ITD-positive mice develop a myeloproliferative neoplasm (MPN) and HSCs expressing Flt3-ITD have decreased self-renewal capabilities. We hypothesize that mutant p53 drives the development of pre-leukemic HSCs with enhanced self-renewal capability, allowing clonal expansion and subsequent acquisition of Asxl-1 or Flt3 mutations leading to the formation of fully transformed leukemia stem cells. To define the role of mutant p53 in Asxl-1+/- HSCs, we generated p53R248W/+ Asxl-1+/- mice and performed in vitro serial replating assays as well as in vivo competitivebone marrow transplantation experiments. We found that p53R248W significantly enhanced the serial replating ability of Asxl-1-deficient bone marrow cells. Interestingly, while bone marrow from Asxl-1+/- mice had very poor engraftment compared to wild type bone marrow cells 16 weeks post-transplantation, the expression of p53R248W in Asxl-1+/- bone marrow rescued the defect. To examine the role of mutant p53 in Flt3-ITD-positive HSCs, we generated p53R248W/+ Flt3ITD/+ mice. We found that p53R248W enhanced the replating ability of Flt3ITD/+ bone marrow cells. Despite the fact that Flt3ITD/+ bone marrow cells displayed decreased repopulating ability compared to wild type cells 16 weeks post-transplant, expression of p53R248W in Flt3ITD/+ cells rescued the defect. We are monitoring leukemia development in primary and secondary transplant recipients as well as in de novo p53R248W/+ Asxl-1+/- and p53R248W/+ Flt3ITD/+ animals and predict that mutant p53 may cooperate with Asxl-1 deficiency or Flt3-ITD in the formation of LSCs to accelerate leukemia development in Asxl-1 deficient or Flt-ITD-positive neoplasms. Mechanistically, dysregulated epigenetic control underlies the pathogenesis of AML and we discovered that mutant p53 regulates epigenetic regulators, including Ezh1, Ezh2, Kdm2a, and Setd2, in HSCs. H3K27me3 is catalyzed by EZH1 or EZH2 of the Polycomb repressing complex 2 (PRC2). Both Ezh1 and Ezh2 are important for HSC self-renewal. SETD2 is a histone H3K36 methyltransferase and mutations in SETD2 have been identified in 6% of patients with AML. SETD2 deficiency resulted in a global loss of H3K36me3 and increased self-renewal capability of leukemia stem cells. We found that there were increased levels of H3K27me3 and decreased levels of H3K36me3 in p53R248W/+ HSCs compared to that of the WT HSCs. In ChIP experiments, we found that p53R248W, but not WT p53, was associated with the promoter region of Ezh2 in mouse myeloid progenitor cells, suggesting that p53R248W may directly activate Ezh2 expression in hematopoietic cells. Given that Asxl-1 has been shown to regulate H3K27me3 in HSCs, the synergy between mutant p53 and Asxl-1 deficiency on LSC self-renewal could be due to changes in histone modifications. Overall, we demonstrate that mutant p53 promotes the development of pre-leukemic HSCs by a novel mechanism involving dysregulation of the epigenetic pathways. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1991 ◽  
Vol 78 (7) ◽  
pp. 1706-1712 ◽  
Author(s):  
S Okada ◽  
H Nakauchi ◽  
K Nagayoshi ◽  
S Nishikawa ◽  
S Nishikawa ◽  
...  

Abstract The proto-oncogene c-kit encodes a transmembrane tyrosine kinase receptor for stem cell factor (SCF). The c-kit/SCF signal is expected to have an important role in hematopoiesis. A monoclonal antibody (ACK- 2) against the murine c-kit molecule was prepared. Flow cytometric analysis showed that the bone marrow cells that expressed the c-kit molecule (approximately 5%) were B220(B)-, TER119(erythroid)-, Thy1negative-low, and WGA+. A small number of Mac-1(macrophage)+ or Gr- 1(granulocyte)+ cells were c-kit-low positive. Colony-forming unit in culture (CFU-C) and day-8 and day-12 CFU-spleen (CFU-S) existed exclusively in the c-kit-positive fraction. About 20% of the Lin(lineage)-c-kit+ cells were rhodamine-123low and this fraction contained more day-12 CFU-S than day-8 CFU-S. On the basis of these findings, murine hematopoietic stem cells were enriched with normal bone marrow cells. One of two and one of four Thy-1lowLin-WGA+c-kit+ cells were CFU-C and CFU-S, respectively. Long-term repopulating ability was investigated using B6/Ly5 congenic mice. Eight and 25 weeks after transplantation of Lin-c-kit+ cells, donor-derived cells were found in the bone marrow, spleen, thymus, and peripheral blood. In peripheral blood, T cells, B cells, and granulocyte-macrophages were derived from donor cells. Injection of ACK-2 into the irradiated mice after bone marrow transplantation decreased the numbers of day-8 and day-12 CFU-S in a dose-dependent manner. Day-8 spleen colony formation was completely suppressed by the injection of 100 micrograms ACK-2, but a small number of day-12 colonies were spared. Our data show that the c- kit molecule is expressed in primitive stem cells and plays an essential role in the early stages of hematopoiesis.


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 396-402 ◽  
Author(s):  
BD Luskey ◽  
M Rosenblatt ◽  
K Zsebo ◽  
DA Williams

The efficiency of retroviral-mediated gene transfer into hematopoietic stem cells (HSC) is dependent on the survival and self-renewal of HSC in vitro during retroviral infection. We have examined the effect of prestimulation of bone marrow with various cytokines, including the product of the Steel gene, Steel factor or stem cell factor (SCF) (the ligand for the c-kit receptor) on the efficiency of retroviral transduction of the human adenosine deaminase (hADA) cDNA into murine HSC. Bone marrow cells were prestimulated for 48 hours with hematopoietic growth factors, then cocultivated with the packaging cell line producing the ZipPGK-ADA simplified retrovirus for an additional 48 hours with continued growth factor exposure. Nonadherant cells from these cocultures were injected into lethally irradiated recipients. The content of day 12 colony-forming unit-spleen (CFU-S12) in SCF/interleukin 6 (IL-6)-prestimulated and cocultured bone marrow was more than threefold greater than that of IL-3/IL-6-prestimulated bone marrow cells. All mice receiving bone marrow cells infected with the PGK-ADA virus after prestimulation with IL-3/IL-6 or SCF/IL-6 demonstrated hADA expression in the peripheral blood after full hematopoietic reconstitution. While all recipients of IL-3/IL-6- prestimulated bone marrow expressed hADA at 4 months posttransplant, in three independent experiments examining a total of 33 mice, in most recipients of SCF/IL-6-prestimulated and infected bone marrow cells, the expression of human enzyme was higher than IL-3/IL-6 mice. Southern blot analysis of DNA from hematopoietic tissues from these same mice prepared at least 4 months posttransplantation also demonstrated a higher infection efficiency of HSC as measured by proviral integration patterns and genome copy number analysis. These results suggest that the higher level of hADA expression seen in mice receiving marrow prestimulated with SCF/IL-6 before retroviral infection is due to more efficient infection of reconstituting HSC. Other growth factor combinations were also studied; however, prestimulation with SCF/IL-6 or IL-3/IL-6 appeared optimal. Using retroviral-mediated gene transfer and viral integration patterns, Steel factor (SCF) in combination with IL-6 appears to increase the survival and self-renewal of reconstituting hematopoietic stem cells and proves useful in effecting expression of foreign genes in transplant recipients. Such pretreatment may also be useful in the application of retroviral transfer methods to human cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1689-1689 ◽  
Author(s):  
Yan Shou ◽  
Lilia Stepanova ◽  
Brian Sorrentino

Overexpression of the homebox transcription factor HOXB4 can enhance self-renewal of murine hematopoietic stem cells (HSCs) and thereby result in an increased number of HSCs in vivo. In mice transplanted with bone marrow cells transduced with a retroviral vector expressing HOXB4, HSC expansion stopped after HSC numbers regenerated to a normal level. Furthermore, when transduced bone marrow cells from primary transplant recipients were transplanted into secondary recipients, HSCs failed to recover to normal numbers (G. Sauvageau et al, Genes and Dev, 9:1753, 1995). One possible explanation for these results is that HSC expansion could be limited to an early time interval in the primary transplant recipient. In order to determine if a time-window exists for HOXB4-mediated HSC expansion, and to develop a method to control HSC expansion for gene therapy applications, we generated a retroviral vector expressing a HOXB4 protein that was fused to a variant estrogen responsive binding element (ERT2). This HOXB4-ERT2 protein allowed HOXB4 function to be regulated with 4-hydroxytamoxifen (TAM). Murine bone marrow cells were transduced with the MSCV- HOXB4-ERT2-GFP vector and transplanted into lethally irradiated recipients. A 3 week course of daily TAM treatment was started either immediately after transplant, or in a second cohort, 12 weeks after transplant. When TAM treatment was administered for the first 3 weeks after transplant, there was a 7-fold increase in the percentage of GFP positive peripheral blood leukocytes compared to the cohort transplanted with the same cells but not receiving TAM treatment (15% +/−8, n=7, VERSUS 2 % +/− 2, n=9). In contrast, an identical 3-week course of TAM treatment beginning at 12 weeks post-transplant had no effect on the proportion of GFP+ cells in the peripheral blood (3% +/−2, n=5 VERSUS 2% +/−2, n=4). Bone marrow cells from mice in each of these cohorts were harvested at 21 weeks after transplant, and infused into secondary recipients. The proportion of GFP+ blood cells noted in the primary recipients that were treated with TAM for weeks 1 through 3 was maintained in untreated secondary recipients, confirming that early TAM treatment had resulted in amplification at the level of HSCs. The other half of these secondary recipients was treated immediately after transplant with the same 3 week course of daily TAM treatment. TAM treatment in secondary recipients did not lead to a further increase in the proportion of GFP+ blood cells compared to values in the untreated secondary recipients (9% +/−7, n=9 VERSUS 10% +/−3, n=6). These results show that the early 3 week time interval for HSC expansion was not reset with secondary transplantation and suggest that there is a HSC intrinsic mechanism that limits HOXB4-mediated expansion based on past replication history. This model would explain the physiologic limitation on HSC expansion that has been noted with wildtype HOXB4 vectors. Experiments are now in progress to further elucidate this putative mechanism, including further refinement of the time limits for expansion and microarray analysis of downstream target genes at different time points relative to transplantation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 222-222 ◽  
Author(s):  
Michael G Kharas ◽  
Christopher Lengner ◽  
Fatima Al-Shahrour ◽  
Benjamin L. Ebert ◽  
George Q. Daley

Abstract Abstract 222 Genes that regulate normal hematopoietic stem cells are commonly dysregulated in hematopoietic malignancies. Recently we published that the Msi2 RNA binding protein is an important modulator in both normal hematopoietic stem cells and leukemia (Kharas et al, Nat. Medicine 2010). The closely related Msi1 protein has been shown to regulate mRNA translation through binding to the 3'UTR. Based on the high homology in the RNA recognition motifs, Msi2 has been considered to have similar functions. Moreover, increased MSI2 expression in chronic myelogenous leukemia blast crisis and acute myeloid leukemia predicts a worse clinical prognosis. Previous studies have mainly utilized shRNAs to functionally assess the role of Msi2 in the hematopoietic compartment. However, it remains unclear how Msi2 affects hematopoietic stem cells (HSC) and what are its critical mRNA targets. To develop a model focusing on the HSC compartment and to avoid potential compensatory mechanisms during development, we created Msi2 conditional knockout mice and crossed them with Mx1-Cre mice. We induced excision with poly(I):poly(C), (pIpC), and tested the peripheral blood, bone marrow cells and splenocytes by Southern blotting and QPCR analysis to verify Msi2 deletion. Loss of Msi2 mRNA was confirmed in the Lineagelo, Sca1+ and c-Kit+ (LSK) population. Msi2 deleted bone marrow contained reduced myeloid colony forming capacity and replating efficiency. Mice conditionally deleted for Msi2 had normal white blood cell counts but smaller spleens. In addition, we observed normal percentages of the mature hematopoietic populations, including the myeloid and lymphoid compartments. Nevertheless, absolute numbers of long-term HSCs in the bone marrow were reduced by 3-fold. Bone marrow cells non-competitively transplanted into primary and secondary recipient mice showed a dramatic reduction in HSC chimerism. This defect was also observed when bone marrow was transplanted first to allow engraftment followed by Msi2 deletion. Furthermore, we were able to recapitulate this defect in vitro using the cobblestone-forming activity assay. These results indicate that Msi2 is both an important regulator of normal HSC maintenance and required for efficient engraftment. Most interestingly, Msi2 HSCs failed to maintain a normal quiescent HSC population. We performed microarrays to identify the pathways altered in the LSK population. The Msi2 deficient LSKs showed a reduced self-renewal and increased differentiation gene signature. Gene expression analysis indicates a defective self-renewal program in Msi2-deficient HSCs that is identical to the program gained in leukemic stem cells. These data suggest that MSI2 is a critical modulator of HSCs and may help explain its requirement in the most aggressive myeloid leukemias. Disclosures: Daley: iPierian, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Epizyme, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Verastem, Inc: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Solasia, KK: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; MPM Capital, Inc: Consultancy, Membership on an entity's Board of Directors or advisory committees; Johnson & Johnson: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3194-3194
Author(s):  
George L. Chen ◽  
Kotung Chang ◽  
Xiaosong Huang ◽  
Gerald J. Spangrude ◽  
Josef T. Prchal

Abstract Murine hematopoietic stem cells (HSC) transfected with a gain-of-function human erythropoietic receptor (EPOR) transgene were reported to have a competitive advantage over wild type mouse hematopoietic stem cells in a bone marrow transplantation (BMT) model (Kirby, Blood95(12): 3710, 2000). However, EPOR transgenes may not be normally expressed in early progenitor/stem cells. Moreover, whether Epo/EpoR signaling plays a role in hematopoietic stem cell engraftment is unknown. Our lab previously created mouse models harboring the wild type human EPOR (wthEPOR) or the mutant human gain-of-function EPOR (mthEPOR) gene knocked into the mouse EPOR locus (Divoky, PNAS 98(3): 986, 2001). This animal model has augmented Epo signaling in all tissues that express EpoR, thus the wthEPOR mice are anemic while the mthEPOR mice are polycythemic. We compared the relative engraftment efficiency of mthEPOR vs. wthEPOR HSCs in a competitive bone marrow transplantation (BMT) assay using C57/Bl6 congenic mice. Bone marrow from wthEPOR (CD45.1) and mthEPOR (CD45.2) mice were co-transplanted (1:1) into lethally irradiated (137Cs > 11Gy split) normal recipients (CD45.1/CD45.2). At 7 months after transplantation, peripheral blood chimerism demonstrated skewing towards wthEPOR rather than mthEPOR origin in the granulocyte, macrophage, T cell, and B cell compartments (Data Table). Bone marrow chimerism paralleled peripheral blood chimerism (not shown). Examination of the stem cell compartment by Hoechst 33342 staining demonstrated similar skewing towards wthEPOR origin (Data Table). Because unequal numbers of HSC may result in skewed chimerism, we examined the relative proportions of HSC to total bone marrow cells. In wthEPOR mice, the Flt3− Rh123low subset of cKit+Sca1+ cells (KLS-FS) cells represented 0.011±0.003% of total bone marrow cells while in mthEPOR mice these cells represented 0.023±0.006% of total bone marrow cells (p=0.025). Since equal numbers of wthEPOR and mthEPOR total bone marrow cells were co-transplanted, relatively fewer wthEPOR HSC than mthEPOR HSC were transferred. Taken with the above chimerism data showing skewing towards wthEPOR, these results suggest that wthEPOR HSCs have a significant engraftment advantage over mthEPOR HSCs. Furthermore, enhanced Epo/EpoR signaling may interfere with the long term repopulation of hematopoietic progenitors. Hematopoietic stem cells undergo self renewal or differentiation/proliferation; in the presence of erythropoietin, a cytokine with proliferative and differentiating properties, it may be that self renewal is suppressed leading ultimately to the observed skewed chimerism. These data suggest that erythropoietin administration to patients during and immediately after marrow transplantation may be detrimental and should be used judiciously. Peripheral Blood and Marrow Chimerism Compartment wthEPOR (CD45.1) mthEPOR (CD45.2) Endogenous control (CD45.1/CD45.2) All p values for wthEPOR vs mthEPOR < 0.01 Neutrophil (blood) 72.7% 18.8% 8.5% Macrophage (blood) 76.8% 14.7% 8.5% T cell (blood) 78.6% 9.3% 12.2% B cell (blood) 72.8% 17.7% 9.5% HSC (marrow) 66% 15.1% 18.9%


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 396-402 ◽  
Author(s):  
BD Luskey ◽  
M Rosenblatt ◽  
K Zsebo ◽  
DA Williams

Abstract The efficiency of retroviral-mediated gene transfer into hematopoietic stem cells (HSC) is dependent on the survival and self-renewal of HSC in vitro during retroviral infection. We have examined the effect of prestimulation of bone marrow with various cytokines, including the product of the Steel gene, Steel factor or stem cell factor (SCF) (the ligand for the c-kit receptor) on the efficiency of retroviral transduction of the human adenosine deaminase (hADA) cDNA into murine HSC. Bone marrow cells were prestimulated for 48 hours with hematopoietic growth factors, then cocultivated with the packaging cell line producing the ZipPGK-ADA simplified retrovirus for an additional 48 hours with continued growth factor exposure. Nonadherant cells from these cocultures were injected into lethally irradiated recipients. The content of day 12 colony-forming unit-spleen (CFU-S12) in SCF/interleukin 6 (IL-6)-prestimulated and cocultured bone marrow was more than threefold greater than that of IL-3/IL-6-prestimulated bone marrow cells. All mice receiving bone marrow cells infected with the PGK-ADA virus after prestimulation with IL-3/IL-6 or SCF/IL-6 demonstrated hADA expression in the peripheral blood after full hematopoietic reconstitution. While all recipients of IL-3/IL-6- prestimulated bone marrow expressed hADA at 4 months posttransplant, in three independent experiments examining a total of 33 mice, in most recipients of SCF/IL-6-prestimulated and infected bone marrow cells, the expression of human enzyme was higher than IL-3/IL-6 mice. Southern blot analysis of DNA from hematopoietic tissues from these same mice prepared at least 4 months posttransplantation also demonstrated a higher infection efficiency of HSC as measured by proviral integration patterns and genome copy number analysis. These results suggest that the higher level of hADA expression seen in mice receiving marrow prestimulated with SCF/IL-6 before retroviral infection is due to more efficient infection of reconstituting HSC. Other growth factor combinations were also studied; however, prestimulation with SCF/IL-6 or IL-3/IL-6 appeared optimal. Using retroviral-mediated gene transfer and viral integration patterns, Steel factor (SCF) in combination with IL-6 appears to increase the survival and self-renewal of reconstituting hematopoietic stem cells and proves useful in effecting expression of foreign genes in transplant recipients. Such pretreatment may also be useful in the application of retroviral transfer methods to human cells.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1406-1406
Author(s):  
Matthew J Boyer ◽  
Feng Xu ◽  
Hui Yu ◽  
Tao Cheng

Abstract DNA methylation is an epigenetic means of gene regulation and is carried out by a family of methyltransferases of which DNMT1 acts to maintain methylation marks following DNA replication and DNMT3a and DNMT3b methylate DNA de novo. DNMT3b has been shown to be essential for mammalian development and necessary for differentiation of germline and neural progenitor cells. Mutations of DNMT3b in humans lead to a rare autosomal recessive disorder characterized by immunodeficiency, centromeric instability, and facial abnormalities. We have shown by real-time, RT-PCR that DNMT3b mRNA is uniquely over-expressed by approximately 30-fold in immunophenotypically-defined longterm repopulating hematopoietic stem cells (HSCs) that are CD34−lineage−c-kit+Sca-1+ as compared to progenitor and differentiated cell types within the bone marrow and with respect to the other members of the DNMT family, namely DNMT1 and DNMT3a. To determine DNMT3b’s function in HSCs competitive bone marrow transplantation was undertaken. Isolated lineage− enriched bone marrow cells were transduced with a retroviral backbone based on the Murine Stem Cell Virus (MSCV) carrying either GFP and a short, hairpin RNA (shRNA) targeting DNMT3b or GFP alone. Following transduction 1×105 GFP+ cells along with 1×105 competitor cells were transplanted into 9.5 Gray irradiated congenic recipients. Two months following transplantation mice receiving bone marrow cells transduced with DNMT3b shRNA showed a significantly lower engraftment of donor cells as a percentage of total competitor cell engraftment in the peripheral blood as compared to those receiving cells transduced with GFP alone (24.8 vs 3.7, p&lt;0.05) which persisted at 3 months (22.8 vs 1.5, p&lt;0.05). Similarly, within the donor derviced cells in the peripheral blood there was a lower percentage of myeloid (CD11b+) cells at 2 and 3 months in the recipients of DNMT3b shRNA transduced cells as compared to controls. However there was no observed difference in the percentage of peripheral B (CD45R+) or T (CD3+) cells within the donor-derived cells. To determine the mechanism behind the observed engraftment defect with DNMT3b knockdown we cultured GFP+ transduced bone marrow cells in vitro with minimal cytokine support. As a control for our targeting methodology we also transduced bone marrow cells from mice harboring two floxed DNMT3b alleles with a MSCV carrying Cre recombinase and GFP. While lineage− bone marrow cells transduced with GFP alone increased 10-fold in number over two weeks of culture, cells in which DNMT3b was down regulated by shRNA or Cre-mediated recombination only doubled. Culture of lineage− bone marrow cells in methylcellulose medium by the colony-forming cell (CFC) assay revealed increases in the granulocytic and total number of colonies with DNMT3b knockdown or Cre-mediated recombination of DNMT3b similar to the increased myeloid engraftment of DNMT3b shRNA transduced cells observed 1 month following competitive bone marrow transplantation. However when 5,000 of these cells from the first CFC assay were sub-cultured there was a significant loss of colony forming ability within all lineages when DNMT3b was targeted by shRNA or Cre-mediated recombination. Taken together with the decreased engraftment of DNMT3b shRNA cells following competitive bone marrow transplantation, the observed limited proliferation in liquid culture and loss of colony forming ability during serial CFC assays is suggestive of a self-renewal defect of HSCs in the absence of DNMT3b, that was previously only reported in the absence of both DNMT3a and DNMT3b. Further elucidation of this proposed self-renewal defect is being undertaken and results of ongoing studies including long-term culture initiating cell (LTC-IC) assays and identification of genomic sites of DNA methylation within different hematopoietic subsets will also be presented.


Sign in / Sign up

Export Citation Format

Share Document