Novel Function Of Chromosome 7 Open Reading Frame 41 Gene To Promote Leukemic Megakaryocyte Differentiation By Modulating TPA-Induced MAPK/ERK, SAPK/JNK, and NF-κB Signaling

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1209-1209
Author(s):  
Xueqin Sun ◽  
Bin Lu ◽  
Zan Huang

Abstract Phorbol 12-myristate 13-acetate (TPA) primarily activates PKC and subsequently leads to activation of downstream signaling pathways including MAPK/ERK, SAPK/JNK, and NF-κB, which causes gene expression alteration and leukemic cell differentiation. How these TPA-induced genes may contribute to leukemic cell differentiation remains to be addressed. We noticed that a novel gene chromosome 7 open reading frame 41 (C7ORF41) was one of TPA-induced genes without any known functions. Differential expression of C7ORF41 has been identified in human embryo development and predicted to function in hematopoiesis based on hierarchical clustering analysis. To support this, we found high expression level of C7ORF41 in bone marrow. By using K562 cell as a model, we discovered that ectopic expression of C7ORF41 significantly promoted TPA-induced megakaryocyte differentiation evidenced by an increase of CD61 expression. Consistently, two types of transcription factors critical for megakaryopoiesis, RUNX1 and ETS proteins, were simultaneously upregulated by C7ORF41. Furthermore, cytoplasmic distribution of C7ORF41 suggests that it may act as a signaling molecule. As expected, C7ORF41 overexpression enhanced ERK and JNK phosphorylation. In contrast, C7ORF41 knockdown led to an opposite phenotype: impaired megakaryocyte differentiation, attenuated signaling, and reduced transcription factor expression. These observations suggest that C7ORF41 may promote megakaryocyte differentiation by enhancing ERK and JNK signaling that subsequently leads to upregulation of RUNX1 and ETS proteins. Indeed, C7ORF41 overexpression rescued megakaryocyte differentiation blocked by PD98059, a potent ERK inhibitor, while JNK inhibition abrogated the effect of C7ORF41 on upregulation of ETS proteins. In addition, C7ORF41 was highly conserved in evolution and several tyrosine residues including Y34 were strictly preserved, suggesting the importance of tyrosine phosphorylation in C7ORF41 function. In fact, mutant C7ORF41 with Y34 substitution by phenylalanine functioned to inhibit megakaryocyte differentiation. Finally, NF-κB appeared to be the major activator of C7ORF41 that in turn repressed NF-κB activity by inhibiting its phosphorylation at serine 536. Taken together, we have identified novel function of a new gene C7ORF41 that may promote leukemic megakaryocyte differentiation through a novel mechanism in which C7ORF41 forms a well-balanced regulatory network in TPA-induced signaling. In this network, initial TPA treatment primes downstream signaling including MAPK/ERK, SAPK/JNK, and NF-kB. TPA-induced NF-κB activation further upregulates C7ORF41 that may serve to amplify TPA-induced ERK and JNK signaling to ensure megakaryocyte differentiation. On the other hand, C7ORF41 upregulation also serves as a negative regulator of NF-κB activity that may quench TPA-indcued NF-κB signaling. In addition, enhanced ERK signaling feeds back to damp C7ORF41 upregulation that may tune TPA-induced signaling under controllable level. Our findings shed light on understanding forced differentiation in leukemic cells and may provide useful information for rational differentiation therapy. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 650-656 ◽  
Author(s):  
W Tse ◽  
W Zhu ◽  
HS Chen ◽  
A Cohen

Translocations involving chromosomal band 11q23 are associated with leukemias. These translocations fuse the MLL, a gene with sequence homology to the Drosophila trithorax, to genes from a number of other chromosomal loci. We have characterized two t(1;11)(q21;q23) translocations that fuse the MLL gene to a novel gene, AF1q on chromosomal band 1q21, in two infants with acute myelomonocytic leukemia (AMMOL). In one of these patients, der(11) represents an inframe fusion of the N-terminal portion of MLL gene to the complete AF1q open reading frame, whereas der(1) does not give rise to an open reading frame. This observation suggests that the N-terminal portion of MLL gene is critical for leukemogenesis in translocations involving band 11q23. The predicted wild-type AF-1q product is a 9-kD protein with no similarity to any other protein in the data banks. The AF1q mRNA is highly expressed in the thymus but not in peripheral lymphoid tissues. In contrast to its restricted distribution in normal hematopoietic tissue, AF1q was expressed in all leukemic cell lines tested.


2021 ◽  
Author(s):  
Shahan Mamoor

Breast cancer affects women at relatively high frequency (1). We mined published microarray datasets (2, 3) to determine in an unbiased fashion and at the systems level genes most differentially expressed in the primary tumors of patients with breast cancer. We report here significant differential expression of the gene encoding chromosome 7 open reading frame 58, C7orf58, when comparing primary tumors of the breast to the tissue of origin, the normal breast. C7orf58 mRNA was present at significantly lower quantities in tumors of the breast as compared to normal breast tissue. Analysis of human survival data revealed that expression of C7orf58 in primary tumors of the breast was correlated with overall survival in patients with luminal A subtype cancer, demonstrating a relationship between primary tumor expression of a differentially expressed gene and patient survival outcomes influenced by molecular subtype. C7orf58 may be of relevance to initiation, maintenance or progression of cancers of the female breast.


1991 ◽  
Vol 266 (16) ◽  
pp. 10050-10053
Author(s):  
K.E. Hill ◽  
R.S. Lloyd ◽  
J.G. Yang ◽  
R. Read ◽  
R.F. Burk

Sign in / Sign up

Export Citation Format

Share Document