The Transcription Repressor Gfi1 Directly Interacts With and Is Phosphorylated By Aurora A Kinase, Which Abrogates Myeloma-Induced Gfi1 Repression Of The Runx2 Promoter In Pre-Osteoblasts

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1844-1844
Author(s):  
Jixin Ding ◽  
Fengming Wang ◽  
ShunQian Jin ◽  
Judy Anderson ◽  
Deborah L. Galson ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy that is the most frequent cancer to involve the skeleton. MM bone disease is characterized by the formation of lytic bone lesions adjacent to MM cells that rarely heal even when patients are in long-term remission. This is due to the persistent suppression of bone marrow stromal cell (BMSC) differentiation into osteoblasts. We previously reported that MM cells induce long-lasting suppression of osteoblast differentiation by repression of the Runx2 gene through elevated expression of the transcriptional repressor Gfi1. However, how Gfi1 activity in BMSC is regulated by MM cells remains unclear. Using bioinformatics analysis, we found that there are three putative phosphorylation sites in the Gfi1 protein for Aurora A kinase (AurA) at S216, S326, and T418. We confirmed that Gfi1 was phosphorylated by AurA at multiple sites using an in vitro kinase assay. Co-immunoprecipitation assays revealed that AurA physically interacted with Gfi1 and phosphorylated Gfi1 protein. The interaction with AurA stabilized Gfi1 protein by blocking Gfi1 protein turnover, thereby extending the Gfi1 half-life from 2 hrs to 6 hrs. Further, co-transfection studies using wildtype and mutant AurA and Gfi1 showed that AurA inhibition of Gfi1 protein turnover was dependent on AurA kinase activity and phosphorylation of the S326 and T418 amino acid residues of Gfi1. Studies with co-transfected Myc-ubiquitin, FLAG-Gfi1, and HA-AurA revealed that AurA decreased Gfi1 ubiquitination, thereby leading to increased Gfi1 protein stability. Amino acids S326 and T418 are in Gfi1 zinc fingers (ZF) 3 and 6, respectively. It is known that Gfi1 ZF3, 4, and 5 are required for DNA binding, and that the K403R mutation in ZF6 interferes with DNA binding. Therefore we investigated if AurA phosphorylation of Gfi1 interferes with DNA binding. Chromatin immunoprecipitation and mRunx2 promoter oligo-pull down assays demonstrated that phosphorylated Gfi1 can still bind the Runx2 promoter. However, co-transfection studies with AurA and Gfi1 expression vectors with mRunx2-promoter luciferase reporters demonstrated that AurA phosphorylation of Gfi1 blocked repression of the Runx2 promoter. These data indicate that although AurA increased the amount of Gfi1 protein present on Runx2, AurA phosphorylation of Gfi1 appeared to lock Gfi1 in an “Off” (inactive) status and abrogated Gfi1 repression of Runx2 expression in osteoblast precursor cells. Since AurA phosphorylation of Gfi1 is not blocking DNA binding, the difference between Gfi1 “OFF” and “ON” status probably involves altered protein-protein interactions between Gfi1 and other factors that regulate Runx2 transcription. TNFa treatment, which we showed also represses Runx2 via Gfi1 activity, decreased the AurA protein level in MC-4 osteoblast precursor cells. Importantly, we found that AurA mRNA was decreased in both MC-4 cells treated with MM cells in vitro, and in bone marrow stromal cells isolated from MM patients. In conclusion, these data indicate that MM cells lower the levels of AurA in bone marrow stromal cells, thereby decreasing AurA phosphorylation of Gfi1. This helps to maintain Gfi1 in the “ON” status and allows Gfi1 repression of the Runx2 gene, thereby preventing osteoblast differentiation. These data suggest that AurA is an important regulator of Gfi1 function in MM bone disease. Disclosures: Roodman: Amgen: Membership on an entity’s Board of Directors or advisory committees; Eli Lilly: Research Funding.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1184-1184
Author(s):  
Jixin Ding ◽  
Fengming Wang ◽  
ShunQian Jin ◽  
Judy Anderson ◽  
Deborah L. Galson ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy that is the most frequent cancer to involve the skeleton. MM bone disease is characterized by the formation of lytic bone lesions adjacent to MM cells that rarely heal even when patients are in long-term remission. This is due to the persistent suppression of bone marrow stromal cell (BMSC) differentiation into osteoblasts. We previously reported that MM cells induce long-lasting suppression of osteoblast differentiation by repression of the Runx2 gene through elevated expression of the transcriptional repressor Gfi1. However, how Gfi1 activity in BMSC is regulated by MM cells remains unclear. Using bioinformatics analysis, we found that there are three putative phosphorylation sites in the Gfi1 protein for Aurora A kinase (AurA) at S216, S326, and T418. We confirmed that Gfi1 was phosphorylated by AurA at multiple sites using an in vitro kinase assay. Co-immunoprecipitation assays revealed that AurA physically interacted with Gfi1 and phosphorylated Gfi1 protein. The interaction with AurA stabilized Gfi1 protein by blocking Gfi1 protein turnover, thereby extending the Gfi1 half-life from 2 hrs to 6 hrs. Further, co-transfection studies using wildtype and mutant AurA and Gfi1 showed that AurA inhibition of Gfi1 protein turnover was dependent on AurA kinase activity and phosphorylation of the S326 and T418 amino acid residues of Gfi1. Studies with co-transfected Myc-ubiquitin, FLAG-Gfi1, and HA-AurA revealed that AurA decreased Gfi1 ubiquitination, thereby leading to increased Gfi1 protein stability. Amino acids S326 and T418 are in Gfi1 zinc fingers (ZF) 3 and 6, respectively. It is known that Gfi1 ZF3, 4, and 5 are required for DNA binding, and that the K403R mutation in ZF6 interferes with DNA binding. Therefore we investigated if AurA phosphorylation of Gfi1 interferes with DNA binding. Chromatin immunoprecipitation and mRunx2 promoter oligo-pull down assays demonstrated that phosphorylated Gfi1 can still bind the Runx2 promoter. However, co-transfection studies with AurA and Gfi1 expression vectors with mRunx2-promoter luciferase reporters demonstrated that AurA phosphorylation of Gfi1 blocked repression of the Runx2 promoter. These data indicate that although AurA increased the amount of Gfi1 protein present on Runx2, AurA phosphorylation of Gfi1 appeared to lock Gfi1 in an “Off” (inactive) status and abrogated Gfi1 repression of Runx2 expression in osteoblast precursor cells. Since AurA phosphorylation of Gfi1 is not blocking DNA binding, the difference between Gfi1 “OFF” and “ON” status probably involves altered protein-protein interactions between Gfi1 and other factors that regulate Runx2 transcription. TNFa treatment, which we showed also represses Runx2 via Gfi1 activity, decreased the AurA protein level in MC-4 osteoblast precursor cells. Importantly, we found that AurA mRNA was decreased in both MC-4 cells treated with MM cells in vitro, and in bone marrow stromal cells isolated from MM patients. In conclusion, these data indicate that MM cells lower the levels of AurA in bone marrow stromal cells, thereby decreasing AurA phosphorylation of Gfi1. This helps to maintain Gfi1 in the “ON” status and allows Gfi1 repression of the Runx2 gene, thereby preventing osteoblast differentiation. These data suggest that AurA is an important regulator of Gfi1 function in MM bone disease. Disclosures: Roodman: Amgen: Membership on an entity’s Board of Directors or advisory committees; Eli Lilly: Research Funding.


Biomaterials ◽  
2010 ◽  
Vol 31 (12) ◽  
pp. 3231-3236 ◽  
Author(s):  
Ying Zhang ◽  
Xiaopei Deng ◽  
Erica L. Scheller ◽  
Tae-Geon Kwon ◽  
Joerg Lahann ◽  
...  

2013 ◽  
Vol 18 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Kristine Misund ◽  
Katarzyna A. Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne C. G. Klein ◽  
...  

The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell–induced protection against common myeloma drugs is also observed with this method.


2021 ◽  
Vol 363 ◽  
pp. 109340
Author(s):  
Abeer Sallam ◽  
Thangirala Sudha ◽  
Noureldien H.E. Darwish ◽  
Samar Eghotny ◽  
Abeer E-Dief ◽  
...  

2005 ◽  
Vol 25 (12) ◽  
pp. 5183-5195 ◽  
Author(s):  
Taisuke Mori ◽  
Tohru Kiyono ◽  
Hideaki Imabayashi ◽  
Yukiji Takeda ◽  
Kohei Tsuchiya ◽  
...  

ABSTRACT Murine bone marrow stromal cells differentiate not only into mesodermal derivatives, such as osteocytes, chondrocytes, adipocytes, skeletal myocytes, and cardiomyocytes, but also into neuroectodermal cells in vitro. Human bone marrow stromal cells are easy to isolate but difficult to study because of their limited life span. To overcome this problem, we attempted to prolong the life span of bone marrow stromal cells and investigated whether bone marrow stromal cells modified with bmi-1, hTERT, E6, and E7 retained their differentiated capability, or multipotency. In this study, we demonstrated that the life span of bone marrow stromal cells derived from a 91-year-old donor could be extended and that the stromal cells with an extended life span differentiated into neuronal cells in vitro. We examined the neuronally differentiated cells morphologically, physiologically, and biologically and compared the gene profiles of undifferentiated and differentiated cells. The neuronally differentiated cells exhibited characteristics similar to those of midbrain neuronal progenitors. Thus, the results of this study support the possible use of autologous-cell graft systems to treat central nervous system diseases in geriatric patients.


Sign in / Sign up

Export Citation Format

Share Document