Hepatic Leukemia Factor Is An Important Regulator Of Hematopoietic Stem Cell Activity and Identity

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2410-2410
Author(s):  
Karolina Komorowska ◽  
Hanna K.A Mikkola ◽  
Jonas Larsson ◽  
Mattias Magnusson

Abstract The transcription factor Hepatic Leukemia Factor (HLF) was originally identified in a chromosomal translocation with the gene E2A causing a subset of childhood B-lineage acute lymphoid leukemia. Moreover, HLF has been described as a regulator of circadian rhythm and recent findings have implicated HLF as a candidate “stemness” gene in both normal and malignant stem cells. Accordingly, overexpression of HLF in human hematopoietic stem cells (HSC) results in an enhanced reconstitution capability in NOD-SCID mice. However, little is known about HLF’s physiological role in hematopoiesis and HSC regulation. Using quantitative PCR, we found that HLF is highly expressed in mouse (C57Bl/6) HSC and is downregulated upon differentiation (HSC 3.2 (±0.95) fold (p<0.001), LSK 1.9 (±0.47) fold (p<0.05), CMP, GMP MEP all less then 0.1 fold, all values are compared to HPRT). This encouraged us to further investigate HSC function in the absence of HLF. The conventional HLF knockout (KO) mice (C57bl/6 background) were viable, born at normal Mendelian ratios and showed normal hematopoietic parameters (bone marrow cellularity: WT 2.7x107 (±5.4 x106), KO 3.3x107 (±6.4 x106), p>0.2 n=9). In addition, the HLF KO mice demonstrated normal lineage distribution of both mature cells in the peripheral blood and bone marrow as well as the frequency of immunophenotypic HSC (Lin-Sca1+ckit+CD34-Flt3-: WT 0.0005 (±0.5x10-4)%, KO 0.0005 (±0.1x10-3)%; n>10). However, in a serial competitive transplantation assay using whole bone marrow (200 000 cells 1:1 ratio), HLF KO cells demonstrated a significant reduction in reconstitution capacity in primary recipients (WT 56 (±15)%, KO 40.2 (±16)%, p=0.028, n>10), which was further increased in the secondary recipients (WT 87.2 (±26)%, KO 8.7 (±5.8)%, p<0.001, n>10). Almost no engraftment was detected from the HLF KO cells in tertiary recipients. To further evaluate stem cell activity in the absence of HLF, we next enumerated the number of competitive repopulating units (CRU) by limiting dilution assay, which revealed a 2.6 fold reduction, of CRU in the HLF KO mice compared to WT controls (WT 1.6 (±0.4)/105 bone marrow cells, KO 0.6 (±0.2)/105 bone marrow cells). Similarly, transplantation of sorted HSC (Lin-Sca1+ckit+CD34-Flt3-) also showed a 2.4 fold (WT 47.3 (±24)%, KO 19.4 (±25)%, p=0.16, n=9) reduced engraftment of total cells but with enhanced T cell frequency in peripheral blood (WT 19.5 (±6.2)%, KO 40.8 (±7.4)%, p=0.01, n=9). Since we also found that HLF was highly expressed in fetal liver derived HSC, we transplanted fetal liver HLF KO cells from E14.5 in a competitive repopulation setting. In line with the phenotype seen in the adult HLF KO mice, the fetal liver HLF KO cells demonstrated impaired reconstitution ability (WT 52.8 (±16)%, KO 0.9 (±1.4)%, n>10). Intriguingly, the phenotype was stronger than in the adult HLF KO HSC, indicating that HLF is particularly important during the expansion phase of HSC in embryonic development. The underlying mechanism of the reduced HSC activity is still unclear, but preliminary findings show that HLF KO HSC have enhanced ROS levels (WT 337 (±33), KO 510 (±55), p<0.05, n=3) and increased cycling HSC (G0: WT 66.5 (±6.4)%, KO 58.5 (±4.7)%; G1/S/G2/M: WT 33.6 (±6.6)%, KO 41.7 (±4.9)%, n=3). We are currently performing global gene expression analysis to further understand the mechanism of HLF in HSC regulation. Interestingly, we also found that HLF appears to regulate the identity of HSC by modulating the expression of the SLAM code on the cell surface of the HLF KO HSC. In contrast to the normal frequency of LSK Flt3-CD34- cells, the HLF KO mice displayed a 3.5 fold reduction in the frequency of LSK CD150+CD48- cells (WT 1.94x10-4 (±4.4x10-5)%, KO 0.56x10-4 (±1.5x10-5)%, p<0.001 n>10). Strikingly, transplantation of as many as 150 LSK CD150+CD48-HLF KO cells showed a complete lack of repopulating capacity in vivo. This did not correlate to the number of functional HSC seen when transplanting whole bone marrow and indicates that HLF affects the identity of HSC by modulating the expression of the SLAM markers. Taken together, we show here for the first time that HLF has a fundamental role in HSC biology during both fetal and adult hematopoiesis by regulating HSC activity and identity. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 1957-1964 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks

Mouse hematopoietic stem cells can be identified and enriched from populations of normal bone marrow cells by immunofluorescent labeling of cell surface molecules followed by flow cytometric separation. We show here that the majority of hematopoietic stem cell activity, as defined by long-term competitive repopulation of irradiated animals and by a secondary transplant assay for spleen colony-forming units (CFU- S), could be localized in Ly-6b haplotype mice to a fraction of bone marrow cells that expresses the Ly-6A/E (Sca-1) molecule. Further, an analysis of hematopoietic stem cell activity in bone marrow of mouse strains expressing the Thy-1.1 allele indicated that the vast majority of activity was included in the Thy-1low population. In contrast, hematopoietic stem cell activity found in the bone marrow of Thy-1.2 genotype mouse strains was recovered in both the Thy-1neg and the Thy- 1low populations. However, similar to Thy-1.1 strains, most activity was localized to the Ly-6A/E+ population of cells. The difference in Thy-1 phenotype of hematopoietic stem cell activity apparent between Thy-1.1- and Thy-1.2-expressing mouse strains was not caused by differences in the staining intensity of monoclonal antibodies (MoAbs) specific for the Thy-1 alleles. Furthermore, an antiframework MoAb that stains both alleles of Thy-1 separated hematopoietic stem cell activity from mice expressing the two alleles in the same manner as did allele- specific MoAb. The results of this study show that Thy-1 expression is not an invariant characteristic of mouse hematopoietic stem cells, and that mice expressing the Thy-1.1 allele are unique in that hematopoietic stem cell activity is found exclusively in the Thy-1low population.


1992 ◽  
Vol 175 (1) ◽  
pp. 175-184 ◽  
Author(s):  
N Uchida ◽  
I L Weissman

Hematopoietic stem cells (HSCs) are defined in mice by three activities: they must rescue lethally irradiated mice (radioprotection), they must self-renew, and they must restore all blood cell lineages permanently. We initially demonstrated that HSCs were contained in a rare (approximately 0.05%) subset of bone marrow cells with the following surface marker profile: Thy-1.1lo Lin- Sca-1+. These cells were capable of long-term, multi-lineage reconstitution and radioprotection of lethally irradiated mice with an enrichment that mirrors their representation in bone marrow, namely, 1,000-2,000-fold. However, the experiments reported did not exclude the possibility that stem cell activity may also reside in populations that are Thy-1.1-, Sca-1-, or Lin+. In this article stem cell activity was determined by measuring: (a) radioprotection provided by sorted cells; (b) long-term, multi-lineage reconstitution of these surviving mice; and (c) long-term, multi-lineage reconstitution by donor cells when radioprotection is provided by coinjection of congenic host bone marrow cells. Here we demonstrate that HSC activity was detected in Thy-1.1+, Sca-1+, and Lin- fractions, but not Thy-1.1-, Sca-1-, or Lin+ bone marrow cells. We conclude that Thy-1.1lo Lin- Sca-1+ cells comprise the only adult C57BL/Ka-Thy-1.1 mouse bone marrow subset that contains pluripotent HSCs.


Blood ◽  
1992 ◽  
Vol 80 (8) ◽  
pp. 1957-1964 ◽  
Author(s):  
GJ Spangrude ◽  
DM Brooks

Abstract Mouse hematopoietic stem cells can be identified and enriched from populations of normal bone marrow cells by immunofluorescent labeling of cell surface molecules followed by flow cytometric separation. We show here that the majority of hematopoietic stem cell activity, as defined by long-term competitive repopulation of irradiated animals and by a secondary transplant assay for spleen colony-forming units (CFU- S), could be localized in Ly-6b haplotype mice to a fraction of bone marrow cells that expresses the Ly-6A/E (Sca-1) molecule. Further, an analysis of hematopoietic stem cell activity in bone marrow of mouse strains expressing the Thy-1.1 allele indicated that the vast majority of activity was included in the Thy-1low population. In contrast, hematopoietic stem cell activity found in the bone marrow of Thy-1.2 genotype mouse strains was recovered in both the Thy-1neg and the Thy- 1low populations. However, similar to Thy-1.1 strains, most activity was localized to the Ly-6A/E+ population of cells. The difference in Thy-1 phenotype of hematopoietic stem cell activity apparent between Thy-1.1- and Thy-1.2-expressing mouse strains was not caused by differences in the staining intensity of monoclonal antibodies (MoAbs) specific for the Thy-1 alleles. Furthermore, an antiframework MoAb that stains both alleles of Thy-1 separated hematopoietic stem cell activity from mice expressing the two alleles in the same manner as did allele- specific MoAb. The results of this study show that Thy-1 expression is not an invariant characteristic of mouse hematopoietic stem cells, and that mice expressing the Thy-1.1 allele are unique in that hematopoietic stem cell activity is found exclusively in the Thy-1low population.


1978 ◽  
Vol 148 (5) ◽  
pp. 1351-1366 ◽  
Author(s):  
I Goldschneider ◽  
L K Gordon ◽  
R J Morris

Three approaches were used to demonstrate the presence of Thy-1 antigen on the surface of pluripotent hemopoietic stem cells in the rat. In the first, stem cells from fetal liver, neonatal spleen, and adult bone marrow were prevented from forming hemopoietic colonies in the spleens of irradiated recipients spleen (colony-forming unit assay) by incubation with antibodies to Thy-1 antigen. Highly specific rabbit heteroantiserum to purified rat brain Thy-1 antigen and mouse alloantisera to Thy-1.1-positive thymocytes were equally effective. This inhibition was neutralized by purified Thy-1 antigen. In a second series of experiments, Thy-1-positive and Thy-1-negative populations of nucleated bone marrow cells were separated by the FACS. All of the hemopoietic stem cell activity was recovered in the Thy-1-positive population. The stem cells were among the most strongly positive for Thy-1 antigen, being in the upper 25th percentile for relative fluorescence intensity. The relationships of Thy-1 antigen to the rat bone marrow lymphocyte antigen (BMLA) was shown in a third series of experiments. Rabbit anti-BMLA serum, which is raised against a null population of lymphocyte-like bone marrow cells, has been shown to have anti-stem cell activity. Here we demonstrate by double immunofluorescence, cocapping, and differential absorption studies that Thy-1 and BMLA are parts of the same molecule.


1981 ◽  
Vol 154 (4) ◽  
pp. 1164-1177 ◽  
Author(s):  
M J Dyer ◽  
S V Hunt

The existence of stem cells committed to the T lymphoid lineage was deduced from studying how rat T and B stem cells differ in their expression of membrane W3/13 antigen and in their susceptibility in vivo to gamma irradiation. Stem cell activity of rat bone marrow and fetal liver was measured in long-term radiation chimeras using B and T cell alloantigenic surface markers to identify the progeny of donor cells. Monoclonal mouse anti-rat thymocyte antibody W3/13 labeled approximately 40% of fetal liver cells and 60-70% of young rat bone marrow cells (40% brightly, 25% dimly). Bright, dim, and negative cells were separated on a fluorescence-activated cell sorter. All B and T lymphoid stem cells in fetal liver were W3/13 bright, as were B lymphoid stem cells in bone marrow. W3/13 dim bone marrow had over half the T cell repopulating activity of unseparated marrow but gave virtually no B cell repopulation. In further experiments, the radiosensitivity of endogenous B and T lymphoid stem cells was determined by exposing host rats to between 4.5 and 10 Gy of gamma irradiation before repopulation with genetically marked marrow. The results depended on whether chimerism was assayed before day 50 or after day 100. At early times, a radioresistant T stem cell was indicated, whose activity waned later. Thus committed T stem cells of rats carry moderate amounts of W3/13 antigen and are more radioresistant but less permanently chimeragenic than the stem cells that regenerate B lymphocytes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 857-857
Author(s):  
Gregor B. Adams ◽  
Ian R. Alley ◽  
Karissa T. Chabner ◽  
Ung-il Chung ◽  
Emily S. Marsters ◽  
...  

Abstract During development, hematopoietic stem cells (HSCs) translocate from the fetal liver to the bone marrow, which remains the site of hematopoiesis throughout adulthood. In the bone marrow the HSCs are located at the endosteal surface, where the osteoblasts are a key component of the stem cell niche. The exogenous signals that specifically direct HSCs to the bone marrow have been thought to include stimulation of the chemokine receptor CXCR4 by its cognate ligand stromal derived factor-1α (SDF-1α or CXCL12). However, experiments in which CXCR4−/− fetal liver hematopoietic cells were transplanted into wild-type hosts demonstrated efficient engraftment of the HSCs in the bone marrow. In addition, treatment of HSCs with inhibitors of Gαi-coupled signaling, which blocks transmigration towards SDF-1αin vitro, does not affect bone marrow homing and engraftment in vivo. Therefore, we examined whether Gsα-coupled mechanisms play a key role in the engraftment of the HSCs in the bone marrow environment. Utilizing an inducible-conditional knockout of Gsα, we found that deletion of the gene in hematopoietic bone marrow cells did not affect their ability to perform in the in vitro primitive CFU-C or LTC-IC assay systems. However, Gsα−/− cells were unable to establish effective hematopoiesis in the bone marrow microenvironment in vivo in a competitive repopulation assay (41.1% contribution from wild-type cells versus 1.4% from knockout cells). These effects were not due to an inability of the cells to function in the bone marrow in vivo as deletion of Gsα following establishment of hematopoiesis had no effects on the HSCs. Examining the ability of the HSCs to home to the bone marrow, though, demonstrated that deletion of Gsα resulted in a marked impairment of the ability of the stem cells to localize to the marrow space (approximately 9-fold reduction in the level of primitive cell homing). Furthermore, treatment of BM MNCs with an activator of Gsα augmented the cells homing and thus engraftment potential. These studies demonstrate that Gsα is critical to the localization of HSCs to the bone marrow. Which receptors utilize this pathway in this context remains unknown. However, Gsα represents a previously unrecognized signaling pathway for homing and engraftment of HSCs to bone marrow. Pharmacologic activation of Gsα in HSC ex vivo prior to transplantation offers a potential method for enhancing stem cell engraftment efficiency.


Blood ◽  
1997 ◽  
Vol 89 (12) ◽  
pp. 4337-4347 ◽  
Author(s):  
Kateri A. Moore ◽  
Hideo Ema ◽  
Ihor R. Lemischka

Abstract The cellular and molecular mechanisms that regulate the most primitive hematopoietic stem cell are not well understood. We have undertaken a systematic dissection of the complex hematopoietic microenvironment to define some of these mechanisms. An extensive panel of immortalized stromal cell lines from murine fetal liver were established and characterized. Collectively, these cell lines display extensive heterogeneity in their in vitro hematopoietic supportive capacity. In the current studies, we describe a long-term in vitro culture system using a single stromal cell clone (AFT024) that qualitatively and quantitatively supports transplantable stem cell activity present in highly purified populations. We show multilineage reconstitution in mice that received the equivalent of as few as 100 purified bone marrow and fetal liver stem cells cultured for 4 to 7 weeks on AFT024. The cultured stem cells meet all functional criteria currently ascribed to the most primitive stem cell population. The levels of stem cell activity present after 5 weeks of coculture with AFT024 far exceed those present in short-term cytokine-supported cultures. In addition, maintenance of input levels of transplantable stem cell activity is accompanied by expansion of other classes of stem/progenitor cells. This suggests that the stem/progenitor cell population is actively proliferating in culture and that the AFT024 cell line provides a milieu that stimulates progenitor cell proliferation while maintaining in vivo repopulating activity.


Blood ◽  
2006 ◽  
Vol 107 (6) ◽  
pp. 2317-2321 ◽  
Author(s):  
Alejandro B. Balazs ◽  
Attila J. Fabian ◽  
Charles T. Esmon ◽  
Richard C. Mulligan

Abstract The hematopoietic stem cell (HSC) is a unique cell type found in bone marrow, which has the capacity for both self-renewal and differentiation into all blood lineages. The identification of genes expressed specifically in HSCs may help identify gene products vital to the control of self-renewal and/or differentiation, as well as antigens capable of forming the basis for improved methods of stem cell isolation. In previous studies, we identified a number of genes that appeared to be differentially expressed in murine bone marrow–derived HSCs, using microarray technology. We report here that one of those genes, encoding the murine endothelial protein C receptor (EPCR), is expressed at high levels within the bone marrow in HSCs. Bone marrow cells isolated on the basis of EPCR expression alone are highly enriched for hematopoietic reconstitution activity, showing levels of engraftment in vivo comparable to that of stem cells purified using the most effective conventional methods. Moreover, evaluation of cell populations first enriched for stem cell activity by conventional methods and subsequently fractionated on the basis of EPCR expression indicates that stem cell activity is always associated with EPCR-expressing cells. Based on our findings, we believe EPCR represents the first known marker that `explicitly' identifies hematopoietic stem cells within murine bone marrow.


Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 2900-2908 ◽  
Author(s):  
Martin Körbling ◽  
Paolo Anderlini

Abstract Hematopoietic stem cells from 4 different sources have been or are being used for the reconstitution of lymphohematopoietic function after myeloablative, near-myeloablative, or nonmyeloablative treatment. Bone marrow (BM)–derived stem cells, introduced by E. D. Thomas in 1963,1 are considered the classical stem cell source. Fetal liver stem cell transplantation has been performed on a limited number of patients with aplastic anemia or acute leukemia, but only transient engraftment has been demonstrated.2 Peripheral blood as a stem cell source was introduced in 1981,3 and cord blood was introduced as a source in 1988.4 The various stem cell sources differ in their reconstitutive and immunogenic characteristics, which are based on the proportion of early pluripotent and self-renewing stem cells to lineage-committed late progenitor cells and on the number and characteristics of accompanying “accessory cells” contained in stem cell allografts.


Blood ◽  
1987 ◽  
Vol 70 (6) ◽  
pp. 1758-1763 ◽  
Author(s):  
T Nakano ◽  
N Waki ◽  
H Asai ◽  
Y Kitamura

Abstract The spleen colony-forming assay does not represent the number of hematopoietic stem cells with extensive self-maintaining capacity because five to 50 spleen colony-forming units (CFU-S) are necessary to rescue a genetically anemic (WB X C57BL/6)F1-W/Wv(WBB6F1-W/Wv) mouse. We investigated which is more important for the reconstitution of erythropoiesis, the transplantation of multiple CFU-S or that of a single stem cell with extensive self-maintaining potential. The electrophoretic pattern of hemoglobin was used as a marker of reconstitution and that of phosphoglycerate kinase (PGK), an X chromosome-linked enzyme, as a tool for estimating the number of stem cells. For this purpose, we developed the C57BL/6 congeneic strain with the Pgk-1a gene. Bone marrow cells were harvested after injection of 5- fluorouracil from C57BL/6-Pgk-1b/Pgk-1a female mice in which each stem cell had either A-type PGK or B-type PGK due to the random inactivation of one or two X chromosomes. When a relatively small number of bone marrow cells (ie, 10(3) or 3 X 10(3] were injected into 200-rad- irradiated WBB6F1-W/Wv mice, the hemoglobin pattern changed from the recipient type (Hbbd/Hbbs) to the donor type (Hbbs/Hbbs) in seven of 150 mice for at least 8 weeks. Erythrocytes of all these WBB6F1-W/Wv mice showed either A-type PGK alone or B-type PGK alone during the time of reconstitution, which suggests that a single stem cell with extensive self-maintaining potential may sustain the whole erythropoiesis of a mouse for at least 8 weeks.


Sign in / Sign up

Export Citation Format

Share Document