Molecular Mechanisms Of Inhibition Of Ribosomal Biogenesis and Translational Flux By The Selective Inhibitor Of Nuclear Export (SINE) XPO1/CRM1 Antagonist KPT-185 In Mantle Cell Lymphoma

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 820-820 ◽  
Author(s):  
Yoko Tabe ◽  
Kensuke Kojima ◽  
Linhua Jin ◽  
Hiroko Iwanami ◽  
Hiromichi Matsushita ◽  
...  

Abstract Exportin 1 (XPO1/CRM1) mediates transport of a number of cargo molecules including transcription factors and ribosomal subunits from the nucleus to cytoplasm. XPO1 is critical for cancer cell survival and proliferation, and we reported that high XPO1 expression correlates with poor prognosis in AML (Kojima, Blood, 2013). Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma that frequently shows chemoresistance. The overexpression of cyclin D1 due to the specific translocation t(l1 ;14)(q13;q32) in MCL cells is believed to be associated with oncogenesis, and additional genetic events such as mutation/overexpression of p53 are adverse prognostic indicators. Since a number of signaling pathways are dysregulated in MCL, novel strategies aimed at restoring multiple anti-oncogenic pathways, are of considerable interest. We have previously reported anti-proliferative effects of the small molecule SINE XPO1 antagonist KPT-185 in MCL cells, in which KPT-185 abrogates MCL-related cyclin Dl overexpression and upregulates pro-apoptotic PUMA in a p53-independent manner (Tabe, ASH. 2012). In this study, we identified pro-survival pathways involved in XPO1-dependent nuclear export in MCL cells, using the isobaric tags for relative and absolute quantification (iTRAQ) with two-dimensional-liquid chromatography-tandem mass spectrometry. Two MCL cell lines with known p53 status and sensitivities to KPT-185 were analyzed; wt-p53 Zl38 (IC50 35 nM, ED50 62 nM) and mt-p53 Jeko-1 (IC50 103 nM, ED50 618 nM). iTRAQ proteomics identified a total of 2,255 unique proteins in Zl38 and of 2,179 in Jeko-1 cells (KPT-185 of 50 nM for Zl38 and 100 nM for Jeko-1, 18 h), including 75 proteins (62 downregulated and 13 upregulated proteins) consistently altered after KPT-185 treatment in both cells lines. Notably, 81% of the downregulated proteins (50/62) were ribosomal proteins, and iTRAQ further detected the significant repressions of EIF4A1/PIM2 (eukaryotic translation initiation factor 4A1) and EEF2 (eukaryotic elongation factor 2), suggesting that KPT-185 inhibited the XPO1-dependent nuclear export of ribosomal subunits, which led to a defect of ribosomal biogenesis. Very recently, the coordination between the net translational activity of ribosomal biogenesis and the transcriptional regulation via the multifaceted transcription factor HSF1 (heat shock factor 1) has been reported (Santagata, Science, 2013) and HSF1 was identified as a prime transducer that regulates a transcriptional network of genes driving heat-shock proteins, protein synthesis, and energy metabolism. In our study, iTRAQ consistently detected the KPT-185 induced decreased protein levels of HSF1 target HSP70 (Heat shock protein 70), FASN (Fatty acid synthase), phospho-HSP90 (Heat shock protein 90) and EEF1A1 (Eukaryotic translation elongation factor 1 alpha 1), and increased levels of phospho-HNRNPD (Heterogeneous nuclear ribonucleoprotein D, a nucleic acid binding protein which contributes pre-mRNA processing in nucleus). These results indicate that XPO1 may also be affecting transcriptional processes critical for cellular metabolism and survival. Translation initiation factor EIF4Al/PlM2 is known to be associated with an aggressive clinical course in B-cell lymphomas (Gomez-Abad, Blood. 2011), and downregulation of PIM1 kinase via ribosomal protein deficiency induces cell-cycle inhibitor p27KIP (Morishita, Cancer Res. 2008) and inhibits oncogenic transcription factor c-Myc (Iadevaia, Oncogene. 2010). Of note, iTRAQ detected the KPT-185 induced depletion of ribosomal proteins RPS19 and RPL11, which interact with PIM1 kinase and c-Myc, respectively. We confirmed KPT-185 induced downregulation of PIM1 and c-Myc and upregulation of p27KIP by Western blot. KPT-185 further reduced phospho-S6K, a substrate of mTORC1 and a major negative regulatory axis of autophagy, and induced a shift from LC3-I to LC3-II, suggesting that CRM1 inhibition by KPT-185 causes autophagy through suppression of mTOR signaling. In summary, this is the first investigation of XPO1 inhibition in MCL cells using the iTRAQ proteomics approach. The results suggest that XPO1 inhibition targets ribosomal biogenesis, in addition to its nuclear retention of numerous client proteins including p53. This finding elucidates a novel mechanism and target of KPT-185 and warrants further investigations. Disclosures: Andreeff: Karyopharm Therapeutics: Research Funding.

1999 ◽  
Vol 19 (9) ◽  
pp. 5861-5871 ◽  
Author(s):  
Sheri Uma ◽  
Vanitha Thulasiraman ◽  
Robert L. Matts

ABSTRACT The heme-regulated kinase of the α subunit of eukaryotic initiation factor 2 (HRI) is activated in rabbit reticulocyte lysate (RRL) in response to a number of environmental conditions, including heme deficiency, heat shock, and oxidative stress. Activation of HRI causes an arrest of initiation of protein synthesis. Recently, we have demonstrated that the heat shock cognate protein Hsc70 negatively modulates the activation of HRI in RRL in response to these environmental conditions. Hsc70 is also known to be a critical component of the Hsp90 chaperone machinery in RRL, which plays an obligatory role for HRI to acquire and maintain a conformation that is competent to activate. Using de novo-synthesized HRI in synchronized pulse-chase translations, we have examined the role of Hsc70 in the regulation of HRI biogenesis and activation. Like Hsp90, Hsc70 interacted with nascent HRI and HRI that was matured to a state which was competent to undergo stimulus-induced activation (mature-competent HRI). Interaction of HRI with Hsc70 was required for the transformation of HRI, as the Hsc70 antagonist clofibric acid inhibited the folding of HRI into a mature-competent conformation. Unlike Hsp90, Hsc70 also interacted with transformed HRI. Clofibric acid disrupted the interaction of Hsc70 with transformed HRI that had been matured and transformed in the absence of the drug. Disruption of Hsc70 interaction with transformed HRI in heme-deficient RRL resulted in its hyperactivation. Furthermore, activation of HRI in response to heat shock or denatured proteins also resulted in a similar blockage of Hsc70 interaction with transformed HRI. These results indicate that Hsc70 is required for the folding and transformation of HRI into an active kinase but is subsequently required to negatively attenuate the activation of transformed HRI.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6185
Author(s):  
Jean-Clement Mars ◽  
Mehdi Ghram ◽  
Biljana Culjkovic-Kraljacic ◽  
Katherine L. B. Borden

The translation of RNA into protein is a dynamic process which is heavily regulated during normal cell physiology and can be dysregulated in human malignancies. Its dysregulation can impact selected groups of RNAs, modifying protein levels independently of transcription. Integral to their suitability for translation, RNAs undergo a series of maturation steps including the addition of the m7G cap on the 5′ end of RNAs, splicing, as well as cleavage and polyadenylation (CPA). Importantly, each of these steps can be coopted to modify the transcript signal. Factors that bind the m7G cap escort these RNAs through different steps of maturation and thus govern the physical nature of the final transcript product presented to the translation machinery. Here, we describe these steps and how the major m7G cap-binding factors in mammalian cells, the cap binding complex (CBC) and the eukaryotic translation initiation factor eIF4E, are positioned to chaperone transcripts through RNA maturation, nuclear export, and translation in a transcript-specific manner. To conceptualize a framework for the flow and integration of this genetic information, we discuss RNA maturation models and how these integrate with translation. Finally, we discuss how these processes can be coopted by cancer cells and means to target these in malignancy.


2005 ◽  
Vol 169 (2) ◽  
pp. 245-256 ◽  
Author(s):  
Biljana Culjkovic ◽  
Ivan Topisirovic ◽  
Lucy Skrabanek ◽  
Melisa Ruiz-Gutierrez ◽  
Katherine L.B. Borden

The eukaryotic translation initiation factor eIF4E is a critical modulator of cellular growth with functions in the nucleus and cytoplasm. In the cytoplasm, recognition of the 5′ m7G cap moiety on all mRNAs is sufficient for their functional interaction with eIF4E. In contrast, we have shown that in the nucleus eIF4E associates and promotes the nuclear export of cyclin D1, but not GAPDH or actin mRNAs. We determined that the basis of this discriminatory interaction is an ∼100-nt sequence in the 3′ untranslated region (UTR) of cyclin D1 mRNA, we refer to as an eIF4E sensitivity element (4E-SE). We found that cyclin D1 mRNA is enriched at eIF4E nuclear bodies, suggesting these are functional sites for organization of specific ribonucleoproteins. The 4E-SE is required for eIF4E to efficiently transform cells, thereby linking recognition of this element to eIF4E mediated oncogenic transformation. Our studies demonstrate previously uncharacterized fundamental differences in eIF4E-mRNA recognition between the nuclear and cytoplasmic compartments and further a novel level of regulation of cellular proliferation.


2000 ◽  
Vol 20 (7) ◽  
pp. 2505-2516 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
James Anderson ◽  
Glenn R. Björk ◽  
Srimonti Sarkar ◽  
...  

ABSTRACT Induction of GCN4 translation in amino acid-starved cells involves the inhibition of initiator tRNAMetbinding to eukaryotic translation initiation factor 2 (eIF2) in response to eIF2 phosphorylation by protein kinase GCN2. It was shown previously that GCN4 translation could be induced independently of GCN2 by overexpressing a mutant tRNAAAC Val (tRNAVal*) or the RNA component of RNase MRP encoded by NME1. Here we show that overexpression of the tRNA pseudouridine 55 synthase encoded byPUS4 also leads to translational derepression ofGCN4 (Gcd− phenotype) independently of eIF2 phosphorylation. Surprisingly, the Gcd− phenotype of high-copy-number PUS4 (hcPUS4) did not require PUS4 enzymatic activity, and several lines of evidence indicate thatPUS4 overexpression did not diminish functional initiator tRNAMet levels. The presence of hcPUS4 or hcNME1 led to the accumulation of certain tRNA precursors, and their Gcd− phenotypes were reversed by overexpressing the RNA component of RNase P (RPR1), responsible for 5′-end processing of all tRNAs. Consistently, overexpression of a mutant pre-tRNATyr that cannot be processed by RNase P had a Gcd− phenotype. Interestingly, the Gcd− phenotype of hcPUS4also was reversed by overexpressing LOS1, required for efficient nuclear export of tRNA, and los1Δ cells have a Gcd− phenotype. Overproduced PUS4 appears to impede 5′-end processing or export of certain tRNAs in the nucleus in a manner remedied by increased expression of RNase P or LOS1, respectively. The mutant tRNAVal* showed nuclear accumulation in otherwise wild-type cells, suggesting a defect in export to the cytoplasm. We propose that yeast contains a nuclear surveillance system that perceives defects in processing or export of tRNA and evokes a reduction in translation initiation at the step of initiator tRNAMet binding to the ribosome.


2005 ◽  
Vol 25 (3) ◽  
pp. 1100-1112 ◽  
Author(s):  
Ivan Topisirovic ◽  
Alex Kentsis ◽  
Jacqueline M. Perez ◽  
Monica L. Guzman ◽  
Craig T. Jordan ◽  
...  

ABSTRACT The eukaryotic translation initiation factor 4E (eIF4E) alters gene expression on multiple levels. In the cytoplasm, eIF4E acts in the rate-limiting step of translation initiation. In the nucleus, eIF4E facilitates nuclear export of a subset of mRNAs. Both of these functions contribute to eIF4E's ability to oncogenically transform cells. We report here that the homeodomain protein, HOXA9, is a positive regulator of eIF4E. HOXA9 stimulates eIF4E-dependent export of cyclin D1 and ornithine decarboxylase (ODC) mRNAs in the nucleus, as well as increases the translation efficiency of ODC mRNA in the cytoplasm. These activities depend on direct interactions of HOXA9 with eIF4E and are independent of the role of HOXA9 in transcription. At the biochemical level, HOXA9 mediates these effects by competing with factors that repress eIF4E function, in particular the proline-rich homeodomain PRH/Hex. This competitive mechanism of eIF4E regulation is disrupted in a subset of leukemias, where HOXA9 displaces PRH from eIF4E, thereby contributing to eIF4E's dysregulation. In regard to these results and our previous finding that ∼200 homeodomain proteins contain eIF4E binding sites, we propose that homeodomain modulation of eIF4E activity is a novel means through which this family of proteins implements their effects on growth and development.


Sign in / Sign up

Export Citation Format

Share Document