scholarly journals Transcranial Doppler Ultrasound (TCD) Outcomes for Children with Prior Normal TCD: Post-STOP Study Results

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 562-562
Author(s):  
Janet L. Kwiatkowski ◽  
Heather Fullerton ◽  
Jennifer Voeks ◽  
Lynette Brown ◽  
Ellen Debenham ◽  
...  

Abstract Background: The Stroke Prevention Trial in Sickle Cell Anemia (STOP) and Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) study established routine transcranial Doppler ultrasound (TCD) screening with indefinite transfusions for children with abnormal TCD as standard of care. Children with normal TCD studies have the lowest risk of stroke of ~0.5-1% per year (y). Annual TCD screening is usually recommended for these children to detect possible subsequent conversion to high risk. We sought to determine the frequency of TCD screening utilized in “real world” clinical practice and the TCD outcomes for children with prior normal TCD. Subjects and Methods: During STOP and STOP2 (STOP/2), 3,837 children, ages 2 to 16 y with sickle cell disease type SS or S-Beta-0-thalassemia underwent screening TCD. The Post-STOP study was designed to follow-up the outcomes of children who were screened for or participated in one or both of these randomized trials. 19 of the 26 original study sites participated in Post-STOP, contributing a total of 3,541 (92%) of the STOP/2 subjects. After exit from STOP/2, these children received TCD screening and treatment according to local practices. Data abstractors visited each clinical site and obtained retrospective data from STOP/2 study exit to 2012-2014 (depending on site) on follow-up TCD results and clinical information using standard data collection forms. The rates of TCD re-screening and the proportion of children who converted to abnormal TCD were calculated. Factors associated with conversion to abnormal TCD were assessed. Results: Of the 3,541 subjects, follow-up data were available for 2,838 (80%). The mean age at the last TCD study obtained in STOP/2 was 9.5 y and the mean age at last follow-up in Post-STOP was 19.6 y. The mean duration of follow-up after exiting STOP/2 was 9.2 y. Subjects were classified by their worst TCD in STOP/2: the TCD was normal in 1,814 (64%), conditional in 479 (17%), abnormal in 357 (13%) and inadequate 188 (7%). Among the 1,814 children with only normal studies in STOP/2, follow-up TCD screening was obtained in the Post-STOP era on 842 (46%) at a median rate of 0.28 TCD studies/y (range, 0.05-3.04/y). Among these children, 26 (3.1%) developed an abnormal TCD at a median of 11.5 y (2.2-18.2 y) from the last STOP/2 study, while 77.5% still had normal TCD at a median of 10.7 y (0.7-18.3 y) from last STOP/2 study. The worst follow-up TCD classification for this group with prior normal TCD was conditional in 9.7% and inadequate in 9.6%. Among those that converted from prior normal to abnormal TCD, 12 had an interval conditional study (at median 2.8 y, 0.98-9.2 y) while 14 children converted from normal to abnormal at a median of 4.2 y (1.4-12.7 y) without documented interval conditional study. Children who developed abnormal TCD were younger at STOP/2 study exit (4.9 vs. 7.8 y, p<0.001) and had higher TCD velocity at their last STOP/2 TCD study (154 vs. 136 cm/s, p<0.001) than children whose TCD remained normal. There was no significant difference between the time interval from the last STOP/2 TCD and the first Post-STOP TCD in these 2 groups. Conclusions: In clinical practice, follow-up TCD for children with prior normal TCD was performed less frequently than the generally recommended annual basis. Among children re-screened, the risk of conversion to abnormal TCD was relatively low, but re-screening with TCD identified a subset of at-risk children who could benefit from transfusions to prevent a potentially devastating outcome. Predictors of conversion to abnormal TCD included younger age and prior TCD velocity in the high normal range. Disclosures Adams: Novartis: Consultancy.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 68-68 ◽  
Author(s):  
Janet L. Kwiatkowski ◽  
Julie Kanter ◽  
Heather J. Fullerton ◽  
Jenifer Voeks ◽  
Ellen Debenham ◽  
...  

Abstract Background: The Stroke Prevention Trial in Sickle Cell Anemia (STOP) and Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) established routine transcranial Doppler ultrasound (TCD) screening with indefinite chronic red cell transfusions (CRCT) for children with abnormal TCD as standard of care. To identify children at high-risk of stroke, annual TCD screening is recommended from ages 2 to 16 years, with more frequent monitoring if the result is not normal. A reduction in stroke incidence in children with SCD has been reported in several clinical series and analyses utilizing large hospital databases when comparing rates before and after the publication of the STOP study in 1998. We sought to determine the rate of first ischemic stroke in a multicenter cohort of children who had previously participated in the STOP and/or STOP 2 trials and to determine whether these strokes were screening or treatment failures. Subjects and Methods: Between 1995 and 2005, STOP and STOP 2 (STOP/2) were conducted at 26 sites in the US and Canada. These studies included 3,835 children, ages 2 to 16 y with SCD type SS or S-beta-0-thalassemia. Participation in STOP/2 ranged from a single screening TCD to randomization. STOP 2 also had an observational arm for children on CRCT for abnormal TCD whose TCD had not reverted to normal. The Post-STOP study was designed to follow-up the outcomes of children who participated in one or both trials. 19 of the 26 original study sites participated in Post-STOP, contributing a total of 3,539 (92%) of the STOP/2 subjects. After exit from STOP/2, these children received TCD screening and treatment according to local practices. Data abstractors visited each clinical site and obtained retrospective data from STOP/2 study exit to 2012-2014 (depending on site) including follow-up TCD and brain imaging results, clinical information, and laboratory results. Two vascular neurologists, blinded to STOP/2 status and prior TCD and neuroimaging results, reviewed source records to confirm all ischemic strokes, defined as a symptomatic cerebral infarction; discordant opinions were resolved through discussion. For the first Post-STOP ischemic stroke, prior TCD result and treatment history subsequently were analyzed. Results: Of the 3,539 subjects, follow-up data were available for 2,850 (81%). Twelve children who had a stroke during STOP or STOP2 were excluded from these analyses resulting in data on 2,838 subjects. The mean age at the start of Post-STOP was 10.5 y and mean duration of follow-up after exiting STOP/2 was 9.1 y. A total of 69 first ischemic strokes occurred in the Post-STOP observation period (incidence 0.27 per 100 pt years). The mean age at time of stroke was 14.4±6.2 (median 13.8, range 3.5-28.9) y. Twenty-five of the 69 patients (36%) had documented abnormal TCD (STOP/2 or Post-STOP) prior to the stroke; 15 (60%) were receiving CRCT and 9 (36%) were not (treatment data not available for 1 subject). Among the 44 subjects without documented abnormal TCD, 29 (66%) had not had TCD re-screen in the Post-STOP period prior to the event; 7 of these 29 (24%) were 16 y or older at the start of Post-STOP, which is beyond the recommended screening age. Four of the 44 (9%) patients had inadequate TCD in Post-STOP (1 to 10.7 y prior to event). Six (14%) had normal TCD more than a year before the event (1.2 - 4 y); all but one of these children were younger than 16 y at the time of that TCD. Only 5 (11%) had a documented normal TCD less than 1 year prior to the event. Conclusions: In the Post-STOP era, the rate of first ischemic stroke was substantially lower than that reported in the Cooperative Study of Sickle Cell Disease, prior to implementation of TCD screening. Many (39%) of the Post-STOP ischemic strokes were associated with a failure to re-screen according to current guidelines, while only 11% occurred in children who had had recent low-risk TCD. Among those known to be at high risk prior to stroke, treatment refusal or inadequate treatment may have contributed. While TCD screening and treatment are effective at reducing ischemic stroke in clinical practice, significant gaps in screening and treatment, even at sites experienced in the STOP protocol, remain to be addressed. Closing these gaps should provide yet further reduction of ischemic stroke in SCD. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3736-3736
Author(s):  
Gisele S. Silva ◽  
Maria S. Figueiredo ◽  
Perla Vicari ◽  
Airton R. Massaro ◽  
Adauto Castelo Filho ◽  
...  

Abstract Sickle cell anemia (SCA) may cause a variety of neurological complications, including stroke and headaches. Stroke occurs in up to 9% of children with SCA, and transcranial Doppler (TCD) studies have demonstrated that increased velocities are related to higher stroke risk. Throbbing headache occurs in SCA but its cause, frequency, and relationship to TCD velocities have received little attention. On the other hand, there are few TCD studies in adult patients. Our aims were: 1) to describe the main features of TCD in adult SCA patients, and 2) to investigate if there were correlation between TCD features and presence of headache. TCD was performed in 56 adult SCA patients (≥ 16 years old) and in 56 healthy individuals (HI), matched by age and race. There were 6 patients with a remote history of stroke but none were on chronic transfusion. The SCA group was submitted to a neurological evaluation and specifically asked about the occurrence of headache and its characteristics. The highest flow velocity (maxFV) recorded for each artery was considered the most representative. We analyzed the frequency of FV asymmetry (side-to-side difference > 20%) and focal FV changes. The mean maxFV was significantly higher in patients (117.7 ± 21.6 cm/s) than in HI (72.45 ± 11.48 cm/s) (p<0.005). Only one patient had maxFV higher than 170 cm/s. The frequencies of asymmetry and of focal FV changes were significantly higher in SCA. Forty-one patients (73.2%) reported having headaches. Twenty-eight patients (50%) had severe (= 5 for pain intensity at a 1–10 scale) and frequent headaches (at least once a month). This group of patients presented TCD velocities significantly higher than patients without or with milder headaches (p=0.035). In conclusion, TCD maxFV was significantly higher in adult patients with SCA than HI, however, only one patient was considered at risk of stroke according to TCD criteria described in children. FV asymmetry and focal FV changes may be markers for arterial disease in adult SCA patients, and need to be further confirmed by neuroimaging and clinical follow up studies. The patients with severe headaches presented TCD velocities significantly higher than patients without or with milder headaches, but this finding needs to be confirmed by more and larger studies.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 270-270 ◽  
Author(s):  
Jennifer Rothman ◽  
Shelly Burgett ◽  
Russell E. Ware ◽  
Courtney Thornburg

Abstract Abstract 270 The use of transcranial Doppler ultrasound (TCD), a non-invasive imaging technique, is now clearly established for detecting high risk of stroke in children with sickle cell anemia (SCA). Children with TCD flow velocities ≥200 cm/s have a 10% risk of primary stroke per year. For these children, chronic blood transfusions (CBT) are recommended and have been shown to reduce the risk of primary stroke by up to 90%. The incidence of stroke has decreased to 0.06–0.17 per 100 patient-years since the institution of TCD screening (Fullerton et al. Blood 2004; Enningul-Egham et al., J Pediatr 2010). Although patients with conditional TCDs (flow velocities 170–199 cm/s) have an estimated stroke risk of 2–5% annually, and their rate of conversion from conditional to abnormal is 23% over an 18 month period (Hankins JS et al., BJH 2008), there are no clinical guidelines for primary stroke prevention in this group. We previously conducted a prospective cohort study of hydroxyurea in 37 children with SCA and TCD velocities >140 cm/sec, and demonstrated that TCD velocities decreased significantly after starting hydroxyurea (Zimmerman et al., Blood 2007; NCT00402480). In order to determine if hydroxyurea provided sustained reductions in TCD velocities, we conducted a retrospective review of these 37 children in this original cohort who had elevated TCD velocities and long-term hydroxyurea treatment. The following data were abstracted from the medical record between April 2000 and September 2009: treatment with hydroxyurea and CBT; adherence with treatments; stroke and non-stroke neurological events; and TCD time-averaged mean velocities (TAMV) immediately prior to initiation of hydroxyurea and at the end of extended follow-up. The primary outcome was comparison of pre and post TCD TAMV using a paired t-test. The mean age of enrollment on the original study was 6.8 years (1.8-14.8) and the mean age at follow-up was 12.9 years (5.3-18.5). The mean follow-up was 5.8 years (0.8-8.5) with an overall follow up of 215.1 patient years. Twenty males and 17 females were enrolled. The mean hydroxyurea dose was 25.2 ± 5.6 mg/kg/day, with one patient discontinuing therapy after 15 months. At follow-up, the mean hemoglobin was 8.9 ± 1.2 g/dL and mean HbF was 16 ± 7.2%. Sustained decreases were observed in both the right MCA (164.8 ± 25.5 cm/s to 124.9 ± 35 cm/s, p<0.001) and left MCA (167.9 ± 25.2 cm/s to 126.9 ± 30 cm/s, p<0.001) for all 37 patients. For the 15 patients with conditional TCD velocities at enrollment, 13 had maximal TAMV that reverted to and were sustained in the normal range (185.8 ± 10.0 cm/s to 132.9 ± 14.5 cm/s, p<0.001). Two converted to abnormal TCD velocities at 1.6 years and 4.5 years for a conversion rate of 13%; one was non-adherent but the other was adherent with hemoglobin of 10.8 g/dL and HbF of 23.5%. These two patients were started on CBT and remain stroke free. There were no primary stroke events observed in the 15 subjects with conditional TCD velocities over a total of 78.1 patient years. Of the 5 patients who had abnormal TCD velocities on enrollment and whose parents refused CBT, 1 patient had a stroke after 0.8 years of hydroxyurea therapy. This was the only patient who continued to have abnormal TCD velocities at MTD, 7 months after starting hydroxyurea. The remaining 4 patients continued to have TCD velocities in the normal range off transfusion therapy over 26.3 patient years. Overall, these data illustrate that treatment with hydroxyurea at MTD in children with SCA and elevated TCD velocities resulted in significantly lower and sustained improvements in TCD velocities. Additionally, for children with conditional TCD velocities, hydroxyurea resulted in a lower than expected conversion to abnormal values, thereby sparing many children from CBT without any noted increase risk of stroke. Hydroxyurea did not, however, protect fully against stroke in one patient who had persistently abnormal TCD velocities and therefore CBT remains the standard of care in this population until larger randomized trials are conducted. Further studies are required to evaluate hydroxyurea for primary stroke prevention in children prior to conversion to abnormal TCD and in children who already have abnormal TCD. The currently funded TCD With Transfusions Changing to Hydroxyurea (TWiTCH) clinical trial, which is scheduled to begin enrollment in late 2010, will help answer this important clinical question. Disclosures: Off Label Use: Hydroxyurea is used to reduce complications of sickle cell anemia.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 269-269
Author(s):  
Peter M.K. de Blank ◽  
Daniel M Hayward ◽  
Robert Zimmerman, MD ◽  
Avrum Pollock ◽  
Janet L Kwiatkowski

Abstract Abstract 269 Background: Approximately one-fourth of children with sickle cell disease (SCD), type SS, show evidence of cerebral ischemia on magnetic resonance imaging (MRI) without overt neurologic symptoms. Children with these silent infarcts have an increased risk of neuropsychological abnormalities and overt stroke. The pathophysiology of silent infarcts is unclear. Elevated transcranial Doppler ultrasound (TCD) velocities in the internal cerebral artery (ICA) and middle cerebral artery (MCA) are associated with an increased risk of overt stroke, but have not been associated previously with silent infarct. However, prior studies of silent infarcts failed to examine the association with anterior cerebral artery (ACA) vessel abnormalities, despite a predominantly frontal distribution of these infarcts. In addition, the relationship of magnetic resonance angiography (MRA) abnormalities to silent infarcts has not been extensively studied, although children with abnormal TCD velocity who also have stenosis or occlusion of vessels by MRA have the highest risk of overt stroke. We hypothesized that elevated ACA velocity and/or significant vasculopathy of the cerebral vessels demonstrated by MRA would be associated with a higher risk of silent stroke. Methods: A retrospective analysis of children followed at our Sickle Cell Center with SCD, type SS or Sb0-thalassemia was performed. Children with TCD (with ACA velocity) and brain MRI/A performed within a year of each other were included. TCD studies performed while on chronic transfusions were excluded. The last eligible MRI/TCD combination was used for patients who had multiple studies. Laboratory values obtained within a year of the MRI also were analyzed. Results: Of the 254 eligible subjects, 54% were male and the mean age was 10.6 ± 5.2 years. Silent infarcts were present in 78/254 (30.7%); the location was frontoparietal in 68%. The mean time-averaged mean of the maximal velocity (TAMMvel) of qualifying STOP vessels (MCA, bifurcation, and ICA) was 139±35cm/s, while the mean TAMMvel of the ACA was 117±34cm/s, which is 84% of the velocity of the other anterior vessels. As previously reported, TAMMvel inversely correlated with age (r=-0.40, p<0.0001) and hemoglobin concentration (r=-0.30, p<0.0001). There was no significant difference in TAMMvel in STOP qualifying vessels (MCA, bifurcation, DICA; 137cm/s vs. 145cm/s, p=0.08) among those with and without silent infarct. However, silent infarcts were associated with abnormal TAMMvel (≥200cm/s, 69/239 with normal/conditional vs. 9/15 with abnormal TAMMvel p=0.01) in these vessels. TAMMvel in the ACA was significantly higher (125 cm/s vs. 113 cm/s, p=0.004) in children with silent infarcts, and elevated ACA TAMMvel (≥170cm/s) was associated with silent infarcts (70/242 with normal vs. 8/12 with elevated velocity, p=0.006). No other single vessel velocity was significantly associated with silent infarct. Abnormal ICA/MCA TAMMvel was associated with stenosis of these vessels by MRA (p<0.001), and abnormal ACA velocities were associated with ACA stenosis by MRA (p<0.001). Further, stenosis by MRA in the ICA/MCA was associated with silent infarct (p<0.006) as were abnormalities of the ACA vessels (p=0.001). Conclusions: Unlike prior studies, we demonstrate a significant association between abnormal ICA/MCA velocity and silent infarcts. We also show an association between ACA velocity and silent infarct, which may in part be due to the predominantly frontoparietal distribution of these lesions. This, together with the association of MRA abnormalities of all three anterior vessels (ICA, MCA, ACA) with silent infarcts suggests a possible role of larger cerebral vessel vasculopathy in the pathophysiology of silent infarcts. This could be due to decreased distal blood flow related to the larger vessel narrowing, embolization of thrombus in larger vessels, or small vessel vasculopathy associated with larger vessel disease. However, mechanisms other than larger vessel vasculopathy are also likely to be involved given that silent infarcts occur in a substantial number of children without elevated TCD velocity or vasculopathy by MRA. Nonetheless, assessment of TCD velocity and MRA abnormalities may help provide information on risk assessment for CNS disease in children with SCD. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
pp. 153537022110357
Author(s):  
Grace Champlin ◽  
Scott N Hwang ◽  
Andrew Heitzer ◽  
Juan Ding ◽  
Lisa Jacola ◽  
...  

Silent cerebral infarcts and arteriopathy are common and progressive in individuals with sickle cell anemia. However, most data describing brain lesions in sickle cell anemia are cross-sectional or derive from pediatric cohorts with short follow-up. We investigated the progression of silent cerebral infarct and cerebral vessel stenosis on brain MRI and MRA, respectively, by describing the incidence of new or worsening lesions over a period of up to 25 years among young adults with sickle cell anemia and explored risk factors for progression. Forty-four adults with sickle cell anemia (HbSS or HbSβ0thalassemia), exposed to chronic transfusions ( n = 12) or hydroxyurea ( n = 32), median age 19.2 years (range 18.0–31.5), received a screening brain MRI/MRA and their results were compared with a clinical exam performed during childhood and adolescence. We used exact log-rank test to compare MRI and MRA progression among any two groups. The hazard ratio (HR) and 95% confidence interval (CI) were calculated from Cox regression analyses. Progression of MRI and MRA occurred in 12 (27%) and 4 (9%) young adults, respectively, relative to their pediatric exams. MRI progression risk was high among participants with abnormal pediatric exams (HR: 11.6, 95% CI: 2.5–54.7) and conditional or abnormal transcranial Doppler ultrasound velocities (HR: 3.9, 95% CI: 1.0–15.1). Among individuals treated with hydroxyurea, high fetal hemoglobin measured in childhood was associated with lower hazard of MRI progression (HR: 0.86, 95% CI: 0.76–0.98). MRA progression occurred more frequently among those with prior stroke (HR: 8.6, 95% CI: 1.2–64), abnormal pediatric exam ( P = 0.00084), and elevated transcranial Doppler ultrasound velocities ( P = 0.004). Brain MRI/MRA imaging in pediatrics can identify high-risk patients for CNS disease progression in young adulthood, prompting consideration for early aggressive treatments.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3402-3402 ◽  
Author(s):  
Julie Kanter ◽  
Janet Kwiatkowski ◽  
Heather J. Fullerton ◽  
Jenifer Voeks ◽  
Ellen Debenham ◽  
...  

Abstract Background: Primary hemorrhagic stroke is a rare complication of sickle cell disease (SCD) that usually occurs in adults. The Stroke Prevention Trial in Sickle Cell Anemia (STOP) and Optimizing Primary Stroke Prevention in Sickle Cell Anemia (STOP 2) established routine transcranial Doppler ultrasound (TCD) screening with indefinite chronic red cell transfusions (CRCT) for patients with abnormal TCD as standard of care. Despite a notable improvement in the incidence of infarctive stroke in children with SCD after the introduction of TCD screening protocols, it is unclear how this protocol will affect the rate of hemorrhagic stroke. Presumably, early TCD screening and subsequent initiation of CRCT in high risk patients will prevent the progression of cerebral vasculopathy, which should decrease the risk of hemorrhagic stroke; however this has not been proven. Using the large multicenter cohort of children who participated in STOP and/or STOP 2 trials, we sought to assess whether the rate of hemorrhagic stroke was impacted by the use of TCD screening and/or CRCT. Subjects and Methods: Between 1995 and 2005, STOP and STOP 2 (STOP/2) were conducted at 26 sites in the US and Canada. These studies included 3835 children, ages 2 to 16 y with SCD type SS or S-beta-0-thalassemia. Participation in STOP/2 required at least a single screening TCD for randomization. Patients on STOP 2 also had an observational arm for children started on CRCT who had an abnormal TCD. The Post-STOP study was designed to follow-up the outcomes of children who participated in one or both of trials. For all participants the date of their last encounter in STOP/2 was defined as the start of their Post-STOP period. 19 of the 26 original study sites participated in Post-STOP, contributing a total of 3539 (92%) of the STOP/2 subjects. After exit from STOP/2, these children received TCD screening and treatment according to local practices. Data abstractors visited each clinical site and obtained retrospective data from STOP/2 study exit to 2012-2014 including follow-up TCD and brain imaging results, clinical information, and laboratory results. Two separate neurologists, blinded to STOP/2 status and prior TCD and neuroimaging results adjudicated all suspected strokes. Results: Follow-up data were available for 2850 of the 3539 subjects (81%). Twelve children who had a stroke during the STOP study period were further excluded from this analysis resulting 2838 subjects. The mean age at the start of Post-STOP was 10.5 years and mean duration of follow-up after exiting STOP/2 until time of last medical encounter was 9.1 years. A total of 31 patients had a primary hemorrhagic stroke during the Post-STOP observation period (incidence 0.12 per 100 pt years). The mean age at time of stroke was 16.2+5.6 (median 15.3 range (4.8-30.2) years of age. Of those 31 patients, only 52% had a TCD during Post-STOP prior to the event. Seven of those children who underwent screening had documentation of an abnormal TCD prior to the event (5 during STOP era and/or 3 Post-STOP). However, only 1/7 patients (14%) were documented on CRCT at the time of the stroke (4 patients were receiving HU and 2 patients had unknown treatment). Discussion: Although less common than infarctive stroke, patients with SCD are at increased risk for hemorrhagic stroke. There is an increased risk of mortality for patients who suffer from hemorrhagic stroke (up to 26% in some reports in the 2 weeks after the event). It is unclear if TCD screening and subsequent initiation of CRCT will impact the rate of hemorrhagic stroke in the long term. In our results, a similar incidence of primary hemorrhagic stroke was noted although the patients were overall younger than previously reported (16.5+/- 5.5 years versus 20-29 years in Cooperative Study of Sickle Cell Disease). Many patients who had a hemorrhagic stroke (48%) had not undergone TCD screening during the Post-Stop period. Additionally, although a safe stopping point for CRCT has not been established in patients who have had an abnormal TCD, only 1 patient was documented on CRCT at the time of the event (14%). Thus, it is unclear at this time whether TCD screening and subsequent, lifelong continuation of CRCT could have prevented these other events. Clearly, these results demonstrate that improved implementation of STOP protocol is needed as well as further evaluation of the impact of this protocol on the incidence of hemorrhagic stroke. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3384-3384
Author(s):  
Joanna L. Gendreau ◽  
Kelli Fischbeck ◽  
Brooke Cook ◽  
Steve McCalley ◽  
Lori Wagner ◽  
...  

Background: Stroke, a feared and common complication of sickle cell anemia can be prevented by early recognition of at-risk individuals using annual screening transcranial Doppler ultrasound (TCD) and subsequent treatment with chronic transfusion therapy. The landmark STOP trial established annual screening TCD from 2 to 16 years of age as a standard of care for children with sickle cell anemia. Compliance with this recommendation remains challenging in a majority of sickle cell centers due to various reasons. Methods: An analysis of the institutional process of obtaining TCD revealed several opportunities for improvement. Provider attention was diverted from TCD screening towards management of acute complications such as fever and pain, hydroxyurea management, vaccine administration and psychosocial issues. Other factors contributing to poor TCD completion rates included high no-show rates for annual comprehensive visits, routine preventive visits, and hospital follow-ups. In addition, there were barriers to scheduling and completion of TCD studies after order placement. We hypothesized that by utilizing information technology (IT) tools we could improve TCD ordering and completion rates. Our IT team, in collaboration with our hematology team, designed and optimized the electronic clinic note specific to sickle cell disease in order to capture data such as age, sickle cell phenotype, eligibility for TCD, and last completed TCD date. Utilizing these data an innovative, real-time, sickle-cell dashboard was created and made available to all clinicians. In a single screen view, the dashboard displayed data regarding TCD eligible patients that needed an order for TCD, had a TCD scheduled, or were over-due or near-due for TCD. Amongst these, those who had upcoming appointments were especially highlighted in order to coordinate their clinic and TCD visits on the same day. The dashboard also highlighted patients who were overdue for TCD with no scheduled clinic appointments This data was reviewed by sickle cell nurse coordinator, a physician champion and an IT representative at least weekly. Inaccuracies in data were identified and corrected. The action items were then presented at the weekly sickle cell team meeting and acted upon. We then measured TCD order and completion rates before and after the January 2019 implementation of the dashboard. Results: In 2018 thirty-six orders for TCD were placed with eighteen completed studies (50%) versus 47 orders placed with 42 completed TCD in the first 7 months of 2019 (89%). These results were clinically significant (p=0.0001, Two-sided Fisher's exact test). As of July 31, 2019 out of 68 eligible patients, all but 2 had TCD orders placed (97%). Fifty-one patients were current on their TCD (75%) and the majority of those patients with missing TCD were noncompliant with clinic and radiology appointments. For the first 6 months of the year, an average of 93% of patients were compliant with annual TCD at the time of their clinic visit Conclusion: An IT dashboard created using real-time data; collaboration and communication between clinical, IT and radiology teams; and action during regularly scheduled sickle cell team meetings resulted in marked improvement in TCD ordering and completion rates within a few months. The process was sustainable by training nursing and ancillary staff to utilize data. In the future, this sickle cell dashboard could be utilized to also improve other areas of sickle cell care such as immunizations and medication compliance. Disclosures Gomez: Alnylam: Consultancy; Novo Nordisk, Novartis, Pfizer, Sanofi, Takeda, UniQure: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document